These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34003996)

  • 1. Automated Quantification of Pathological Fluids in Neovascular Age-Related Macular Degeneration, and Its Repeatability Using Deep Learning.
    Mantel I; Mosinska A; Bergin C; Polito MS; Guidotti J; Apostolopoulos S; Ciller C; De Zanet S
    Transl Vis Sci Technol; 2021 Apr; 10(4):17. PubMed ID: 34003996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial Correspondence Between Intraretinal Fluid, Subretinal Fluid, and Pigment Epithelial Detachment in Neovascular Age-Related Macular Degeneration.
    Klimscha S; Waldstein SM; Schlegl T; Bogunovic H; Sadeghipour A; Philip AM; Podkowinski D; Pablik E; Zhang L; Abramoff MD; Sonka M; Gerendas BS; Schmidt-Erfurth U
    Invest Ophthalmol Vis Sci; 2017 Aug; 58(10):4039-4048. PubMed ID: 28813577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-learning based automated quantification of critical optical coherence tomography features in neovascular age-related macular degeneration.
    Borrelli E; Oakley JD; Iaccarino G; Russakoff DB; Battista M; Grosso D; Borghesan F; Barresi C; Sacconi R; Bandello F; Querques G
    Eye (Lond); 2024 Feb; 38(3):537-544. PubMed ID: 37670143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Quantitative Assessment of Retinal Fluid Volumes as Important Biomarkers in Neovascular Age-Related Macular Degeneration.
    Keenan TDL; Chakravarthy U; Loewenstein A; Chew EY; Schmidt-Erfurth U
    Am J Ophthalmol; 2021 Apr; 224():267-281. PubMed ID: 33359681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Automated Quantification of Fluid Volumes to Anti-VEGF Therapy of Neovascular Age-Related Macular Degeneration.
    Schmidt-Erfurth U; Vogl WD; Jampol LM; Bogunović H
    Ophthalmology; 2020 Sep; 127(9):1211-1219. PubMed ID: 32327254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Systematic Prospective Comparison of Fluid Volume Evaluation across OCT Devices Used in Clinical Practice.
    Kostolna K; Reiter GS; Frank S; Coulibaly LM; Fuchs P; Röggla V; Gumpinger M; Leitner Barrios GP; Mares V; Bogunovic H; Schmidt-Erfurth U
    Ophthalmol Sci; 2024; 4(3):100456. PubMed ID: 38317867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutic response in the HAWK and HARRIER trials using deep learning in retinal fluid volume and compartment analysis.
    Schmidt-Erfurth U; Mulyukov Z; Gerendas BS; Reiter GS; Lorand D; Weissgerber G; Bogunović H
    Eye (Lond); 2023 Apr; 37(6):1160-1169. PubMed ID: 35523860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning.
    Moraes G; Fu DJ; Wilson M; Khalid H; Wagner SK; Korot E; Ferraz D; Faes L; Kelly CJ; Spitz T; Patel PJ; Balaskas K; Keenan TDL; Keane PA; Chopra R
    Ophthalmology; 2021 May; 128(5):693-705. PubMed ID: 32980396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of macular fluid volume fluctuations on visual acuity during anti-VEGF therapy in eyes with nAMD.
    Chakravarthy U; Havilio M; Syntosi A; Pillai N; Wilkes E; Benyamini G; Best C; Sagkriotis A
    Eye (Lond); 2021 Nov; 35(11):2983-2990. PubMed ID: 33414525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Segmentation of Lesions Including Subretinal Hyperreflective Material in Neovascular Age-related Macular Degeneration.
    Lee H; Kang KE; Chung H; Kim HC
    Am J Ophthalmol; 2018 Jul; 191():64-75. PubMed ID: 29655643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of retinal fluid monitoring in OCT imaging by automated deep learning versus human expert grading in neovascular AMD.
    Pawloff M; Gerendas BS; Deak G; Bogunovic H; Gruber A; Schmidt-Erfurth U
    Eye (Lond); 2023 Dec; 37(18):3793-3800. PubMed ID: 37311835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of deep learning to quantify fluid volume of neovascular age-related macular degeneration patients based on swept-source OCT imaging: The ONTARIO study.
    Sodhi SK; Pereira A; Oakley JD; Golding J; Trimboli C; Russakoff DB; Choudhry N
    PLoS One; 2022; 17(2):e0262111. PubMed ID: 35157713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical coherence tomographic and visual results at six months after transitioning to aflibercept for patients on prior ranibizumab or bevacizumab treatment for exudative age-related macular degeneration (an American Ophthalmological Society thesis).
    Chan CK; Jain A; Sadda S; Varshney N
    Trans Am Ophthalmol Soc; 2014 Jul; 112():160-98. PubMed ID: 25646034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of an Artificial Intelligence-Based Detector of Sub- and Intraretinal Fluid on a Large Set of Optical Coherence Tomography Volumes in Age-Related Macular Degeneration and Diabetic Macular Edema.
    Habra O; Gallardo M; Meyer Zu Westram T; De Zanet S; Jaggi D; Zinkernagel M; Wolf S; Sznitman R
    Ophthalmologica; 2022; 245(6):516-527. PubMed ID: 36215958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning.
    Schlegl T; Waldstein SM; Bogunovic H; Endstraßer F; Sadeghipour A; Philip AM; Podkowinski D; Gerendas BS; Langs G; Schmidt-Erfurth U
    Ophthalmology; 2018 Apr; 125(4):549-558. PubMed ID: 29224926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of vascular and fluid-related parameters in neovascular age-related macular degeneration using deep learning.
    Schranz M; Told R; Hacker V; Reiter GS; Reumueller A; Vogl WD; Bogunovic H; Sacu S; Schmidt-Erfurth U; Roberts PK
    Acta Ophthalmol; 2023 Feb; 101(1):e95-e105. PubMed ID: 35912717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning to Analyze the Prognostic Value of Current Imaging Biomarkers in Neovascular Age-Related Macular Degeneration.
    Schmidt-Erfurth U; Bogunovic H; Sadeghipour A; Schlegl T; Langs G; Gerendas BS; Osborne A; Waldstein SM
    Ophthalmol Retina; 2018 Jan; 2(1):24-30. PubMed ID: 31047298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic quantification of retinal photoreceptor integrity to predict persistent disease activity in neovascular age-related macular degeneration using deep learning.
    Song X; Xu Q; Li H; Fan Q; Zheng Y; Zhang Q; Chu C; Zhang Z; Yuan C; Ning M; Bian C; Ma K; Qu Y
    Front Neurosci; 2022; 16():952735. PubMed ID: 36061600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospective, Longitudinal Pilot Study: Daily Self-Imaging with Patient-Operated Home OCT in Neovascular Age-Related Macular Degeneration.
    Keenan TDL; Goldstein M; Goldenberg D; Zur D; Shulman S; Loewenstein A
    Ophthalmol Sci; 2021 Jun; 1(2):100034. PubMed ID: 36249303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Automated Multiclass Fluid Segmentation in Optical Coherence Tomography Images Using the Pegasus Fluid Segmentation Algorithms.
    Terry L; Trikha S; Bhatia KK; Graham MS; Wood A
    Transl Vis Sci Technol; 2021 Jan; 10(1):27. PubMed ID: 34008019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.