These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 34004073)
1. Molecular and pharmacological characterization of biogenic amine receptors from the diamondback moth, Plutella xylostella. Liu T; Zhan X; Yu Y; Wang S; Lu C; Lin G; Zhu X; He W; You M; You S Pest Manag Sci; 2021 Oct; 77(10):4462-4475. PubMed ID: 34004073 [TBL] [Abstract][Full Text] [Related]
2. Pharmacological characterization of a β-adrenergic-like octopamine receptor in Plutella xylostella. Huang QT; Ma HH; Deng XL; Zhu H; Liu J; Zhou Y; Zhou XM Arch Insect Biochem Physiol; 2018 Aug; 98(4):e21466. PubMed ID: 29691888 [TBL] [Abstract][Full Text] [Related]
3. Superfamily of genes encoding G protein-coupled receptors in the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Wu SF; Yu HY; Jiang TT; Gao CF; Shen JL Insect Mol Biol; 2015 Aug; 24(4):442-53. PubMed ID: 25824261 [TBL] [Abstract][Full Text] [Related]
4. Pharmacological Properties of the Type 1 Tyramine Receptor in the Diamondback Moth, Ma H; Huang Q; Lai X; Liu J; Zhu H; Zhou Y; Deng X; Zhou X Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31212951 [TBL] [Abstract][Full Text] [Related]
5. Phenyl imidazolidin-2-ones antagonize a β-adrenergic-like octopamine receptor in diamondback moth (Plutella xylostella). Deng XL; Guo L; Ma HH; Hu XP; Zhou XM Pest Manag Sci; 2021 Jul; 77(7):3224-3232. PubMed ID: 33723881 [TBL] [Abstract][Full Text] [Related]
6. Role of Biogenic Amines in Oviposition by the Diamondback Moth, Li F; Li K; Wu LJ; Fan YL; Liu TX Front Physiol; 2020; 11():475. PubMed ID: 32528307 [TBL] [Abstract][Full Text] [Related]
7. A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Hauser F; Cazzamali G; Williamson M; Park Y; Li B; Tanaka Y; Predel R; Neupert S; Schachtner J; Verleyen P; Grimmelikhuijzen CJ Front Neuroendocrinol; 2008 Jan; 29(1):142-65. PubMed ID: 18054377 [TBL] [Abstract][Full Text] [Related]
8. Molecular and pharmacological properties of insect biogenic amine receptors: lessons from Drosophila melanogaster and Apis mellifera. Blenau W; Baumann A Arch Insect Biochem Physiol; 2001 Sep; 48(1):13-38. PubMed ID: 11519073 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide identification and expression profiling of serine proteases and homologs in the diamondback moth, Plutella xylostella (L.). Lin H; Xia X; Yu L; Vasseur L; Gurr GM; Yao F; Yang G; You M BMC Genomics; 2015 Dec; 16():1054. PubMed ID: 26653876 [TBL] [Abstract][Full Text] [Related]
10. Molecular features and expression profiles of octopamine receptors in the brown planthopper, Nilaparvata lugens. Wu SF; Jv XM; Huang JM; Gao CF Pest Manag Sci; 2019 Oct; 75(10):2663-2671. PubMed ID: 30734475 [TBL] [Abstract][Full Text] [Related]
11. Characterization and expression profiling of serine protease inhibitors in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Lin H; Lin X; Zhu J; Yu XQ; Xia X; Yao F; Yang G; You M BMC Genomics; 2017 Feb; 18(1):162. PubMed ID: 28196471 [TBL] [Abstract][Full Text] [Related]
12. Cloning of biogenic amine receptors from moths (Bombyx mori and Heliothis virescens). von Nickisch-Rosenegk E; Krieger J; Kubick S; Laage R; Strobel J; Strotmann J; Breer H Insect Biochem Mol Biol; 1996; 26(8-9):817-27. PubMed ID: 9014328 [TBL] [Abstract][Full Text] [Related]
13. Isolation of seven unique biogenic amine receptor clones from the honey bee by library scanning. Ebert PR; Rowland JE; Toma DP Insect Mol Biol; 1998 May; 7(2):151-62. PubMed ID: 9535160 [TBL] [Abstract][Full Text] [Related]
14. The cloning of one putative octopamine receptor and two putative serotonin receptors from the tobacco hawkmoth, Manduca sexta. Dacks AM; Dacks JB; Christensen TA; Nighorn AJ Insect Biochem Mol Biol; 2006 Sep; 36(9):741-7. PubMed ID: 16935223 [TBL] [Abstract][Full Text] [Related]
15. AmOctα2R: Functional Characterization of a Honeybee Octopamine Receptor Inhibiting Adenylyl Cyclase Activity. Blenau W; Wilms JA; Balfanz S; Baumann A Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33302363 [TBL] [Abstract][Full Text] [Related]
16. AmTAR2: Functional characterization of a honeybee tyramine receptor stimulating adenylyl cyclase activity. Reim T; Balfanz S; Baumann A; Blenau W; Thamm M; Scheiner R Insect Biochem Mol Biol; 2017 Jan; 80():91-100. PubMed ID: 27939988 [TBL] [Abstract][Full Text] [Related]
17. PaOctβ2R: Identification and Functional Characterization of an Octopamine Receptor Activating Adenylyl Cyclase Activity in the American Cockroach Blenau W; Bremer AS; Schwietz Y; Friedrich D; Ragionieri L; Predel R; Balfanz S; Baumann A Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163598 [TBL] [Abstract][Full Text] [Related]
18. Characterization of a tyramine receptor type 2 from hemocytes of rice stem borer, Chilo suppressalis. Wu SF; Xu G; Ye GY J Insect Physiol; 2015 Apr; 75():39-46. PubMed ID: 25772095 [TBL] [Abstract][Full Text] [Related]
19. Molecular cloning and pharmacological characterization of a Bombyx mori tyramine receptor selectively coupled to intracellular calcium mobilization. Huang J; Ohta H; Inoue N; Takao H; Kita T; Ozoe F; Ozoe Y Insect Biochem Mol Biol; 2009 Nov; 39(11):842-9. PubMed ID: 19833207 [TBL] [Abstract][Full Text] [Related]
20. Molecular and pharmacological characterization of a β-adrenergic-like octopamine receptor from the green rice leafhopper Nephotettix cincticeps. Xu G; Chang XF; Gu GX; Jia WX; Guo L; Huang J; Ye GY Insect Biochem Mol Biol; 2020 May; 120():103337. PubMed ID: 32109588 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]