BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34004115)

  • 1. N-Nitrosation Mechanism Catalyzed by Non-heme Iron-Containing Enzyme SznF Involving Intramolecular Oxidative Rearrangement.
    Wang J; Wang X; Ouyang Q; Liu W; Shan J; Tan H; Li X; Chen G
    Inorg Chem; 2021 Jun; 60(11):7719-7731. PubMed ID: 34004115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dioxygen Activation and N
    Wang Y; Dong L; Su H; Liu Y
    Inorg Chem; 2022 Oct; 61(39):15721-15734. PubMed ID: 36148800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Peroxodiiron(III/III) Intermediate Mediating Both
    McBride MJ; Sil D; Ng TL; Crooke AM; Kenney GE; Tysoe CR; Zhang B; Balskus EP; Boal AK; Krebs C; Bollinger JM
    J Am Chem Soc; 2020 Jul; 142(27):11818-11828. PubMed ID: 32511919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and assembly of the diiron cofactor in the heme-oxygenase-like domain of the
    McBride MJ; Pope SR; Hu K; Okafor CD; Balskus EP; Bollinger JM; Boal AK
    Proc Natl Acad Sci U S A; 2021 Jan; 118(4):. PubMed ID: 33468680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an Fe(V)=O active species.
    Chen K; Que L
    J Am Chem Soc; 2001 Jul; 123(26):6327-37. PubMed ID: 11427057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism for Six-Electron Aryl-N-Oxygenation by the Non-Heme Diiron Enzyme CmlI.
    Komor AJ; Rivard BS; Fan R; Guo Y; Que L; Lipscomb JD
    J Am Chem Soc; 2016 Jun; 138(23):7411-21. PubMed ID: 27203126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction coordinate analysis for beta-diketone cleavage by the non-heme Fe2+-dependent dioxygenase Dke1.
    Straganz GD; Nidetzky B
    J Am Chem Soc; 2005 Sep; 127(35):12306-14. PubMed ID: 16131208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CmlI N-Oxygenase Catalyzes the Final Three Steps in Chloramphenicol Biosynthesis without Dissociation of Intermediates.
    Komor AJ; Rivard BS; Fan R; Guo Y; Que L; Lipscomb JD
    Biochemistry; 2017 Sep; 56(37):4940-4950. PubMed ID: 28823151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction Mechanism of a Nonheme Iron Enzyme Catalyzed Oxidative Cyclization via C-C Bond Formation.
    Chang WC; Yang ZJ; Tu YH; Chien TC
    Org Lett; 2019 Jan; 21(1):228-232. PubMed ID: 30550285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An N-nitrosating metalloenzyme constructs the pharmacophore of streptozotocin.
    Ng TL; Rohac R; Mitchell AJ; Boal AK; Balskus EP
    Nature; 2019 Feb; 566(7742):94-99. PubMed ID: 30728519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants.
    Oloo WN; Que L
    Acc Chem Res; 2015 Sep; 48(9):2612-21. PubMed ID: 26280131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties.
    Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M
    Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic Insights into the N-Hydroxylations Catalyzed by the Binuclear Iron Domain of SznF Enzyme: Key Piece in the Synthesis of Streptozotocin.
    Li RN; Chen SL
    Chemistry; 2024 Mar; 30(16):e202303845. PubMed ID: 38212866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic insights on the ortho-hydroxylation of aromatic compounds by non-heme iron complex: a computational case study on the comparative oxidative ability of ferric-hydroperoxo and high-valent Fe(IV)═O and Fe(V)═O intermediates.
    Ansari A; Kaushik A; Rajaraman G
    J Am Chem Soc; 2013 Mar; 135(11):4235-49. PubMed ID: 23373840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why is the oxidation state of iron crucial for the activity of heme-dependent aldoxime dehydratase? A QM/MM study.
    Liao RZ; Thiel W
    J Phys Chem B; 2012 Aug; 116(31):9396-408. PubMed ID: 22799447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure/function correlations over binuclear non-heme iron active sites.
    Solomon EI; Park K
    J Biol Inorg Chem; 2016 Sep; 21(5-6):575-88. PubMed ID: 27369780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational study of the non-heme iron active site in superoxide reductase and its reaction with superoxide.
    Silaghi-Dumitrescu R; Silaghi-Dumitrescu I; Coulter ED; Kurtz DM
    Inorg Chem; 2003 Jan; 42(2):446-56. PubMed ID: 12693226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a concerted vs. sequential oxygen activation mechanism in α-ketoglutarate-dependent nonheme ferrous enzymes.
    Goudarzi S; Iyer SR; Babicz JT; Yan JJ; Peters GHJ; Christensen HEM; Hedman B; Hodgson KO; Solomon EI
    Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5152-5159. PubMed ID: 32094179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. O
    Solomon EI; Goudarzi S; Sutherlin KD
    Biochemistry; 2016 Nov; 55(46):6363-6374. PubMed ID: 27792301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox reactions of the non-heme iron in photosystem II: an EPR spectroscopic study.
    McEvoy JP; Brudvig GW
    Biochemistry; 2008 Dec; 47(50):13394-403. PubMed ID: 19053286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.