These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34004131)

  • 41. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region.
    Harvey BJ; Donato DC; Turner MG
    Ecology; 2016 Sep; 97(9):2272-2282. PubMed ID: 27859087
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Elevation in wildfire frequencies with respect to the climate change.
    Mansoor S; Farooq I; Kachroo MM; Mahmoud AED; Fawzy M; Popescu SM; Alyemeni MN; Sonne C; Rinklebe J; Ahmad P
    J Environ Manage; 2022 Jan; 301():113769. PubMed ID: 34600426
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impacts of bark beetle-induced tree mortality on pyrogenic carbon production and heat output in wildfires for fire modeling and global carbon accounting.
    Howell A; Bretfeld M; Belmont E
    Sci Total Environ; 2021 Mar; 760():144149. PubMed ID: 33341616
    [TBL] [Abstract][Full Text] [Related]  

  • 44. How deregulation, drought and increasing fire impact Amazonian biodiversity.
    Feng X; Merow C; Liu Z; Park DS; Roehrdanz PR; Maitner B; Newman EA; Boyle BL; Lien A; Burger JR; Pires MM; Brando PM; Bush MB; McMichael CNH; Neves DM; Nikolopoulos EI; Saleska SR; Hannah L; Breshears DD; Evans TP; Soto JR; Ernst KC; Enquist BJ
    Nature; 2021 Sep; 597(7877):516-521. PubMed ID: 34471291
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thresholds and alternative states in a Neotropical dry forest in response to fire severity.
    Peinetti HR; Bestelmeyer BT; Chirino CC; Vivalda FL; Kin AG
    Ecol Appl; 2024 Mar; 34(2):e2937. PubMed ID: 38071696
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Repeated wildfires alter forest recovery of mixed-conifer ecosystems.
    Stevens-Rumann C; Morgan P
    Ecol Appl; 2016 Sep; 26(6):1842-1853. PubMed ID: 27755710
    [TBL] [Abstract][Full Text] [Related]  

  • 47. El Niño drought increased canopy turnover in Amazon forests.
    Leitold V; Morton DC; Longo M; Dos-Santos MN; Keller M; Scaranello M
    New Phytol; 2018 Aug; 219(3):959-971. PubMed ID: 29577319
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mixed-severity fire history at a forest-grassland ecotone in west central British Columbia, Canada.
    Harvey JE; Smith DJ; Veblen TT
    Ecol Appl; 2017 Sep; 27(6):1746-1760. PubMed ID: 28434190
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simulating long-term wildfire impacts on boreal forest structure in Central Yakutia, Siberia, since the Last Glacial Maximum.
    Glückler R; Gloy J; Dietze E; Herzschuh U; Kruse S
    Fire Ecol; 2024; 20(1):1. PubMed ID: 38186675
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effectiveness of forest density reduction treatments for increasing drought resistance of ponderosa pine growth.
    Young DJN; Estes BL; Gross S; Wuenschel A; Restaino C; Meyer MD
    Ecol Appl; 2023 Jun; 33(4):e2854. PubMed ID: 37032063
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Wildfire facilitates upslope advance in a shade-intolerant but not a shade-tolerant conifer.
    Brodie EG; Stewart JAE; Winsemius S; Miller JED; Latimer AM; Safford HD
    Ecol Appl; 2023 Jul; 33(5):e2888. PubMed ID: 37212209
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cumulative effects of wildfires on forest dynamics in the eastern Cascade Mountains, USA.
    Reilly MJ; Elia M; Spies TA; Gregory MJ; Sanesi G; Lafortezza R
    Ecol Appl; 2018 Mar; 28(2):291-308. PubMed ID: 29058765
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Climatic and anthropogenic drivers of northern Amazon fires during the 2015-2016 El Niño event.
    Fonseca MG; Anderson LO; Arai E; Shimabukuro YE; Xaud HAM; Xaud MR; Madani N; Wagner FH; Aragão LEOC
    Ecol Appl; 2017 Dec; 27(8):2514-2527. PubMed ID: 28922585
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fire survival of lowland tropical rain forest trees in relation to stem diameter and topographic position.
    Slik JW; Eichhorn KA
    Oecologia; 2003 Nov; 137(3):446-55. PubMed ID: 12920641
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aboveground forest carbon shows different responses to fire frequency in harvested and unharvested forests.
    Collins L; Bradstock R; Ximenes F; Horsey B; Sawyer R; Penman T
    Ecol Appl; 2019 Jan; 29(1):e01815. PubMed ID: 30326546
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Abrupt loss and uncertain recovery from fires of Amazon forests under low climate mitigation scenarios.
    Cano IM; Shevliakova E; Malyshev S; John JG; Yu Y; Smith B; Pacala SW
    Proc Natl Acad Sci U S A; 2022 Dec; 119(52):e2203200119. PubMed ID: 36534807
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence for declining forest resilience to wildfires under climate change.
    Stevens-Rumann CS; Kemp KB; Higuera PE; Harvey BJ; Rother MT; Donato DC; Morgan P; Veblen TT
    Ecol Lett; 2018 Feb; 21(2):243-252. PubMed ID: 29230936
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Climate effects on fire regimes and tree recruitment in Black Hills ponderosa pine forests.
    Brown PM
    Ecology; 2006 Oct; 87(10):2500-10. PubMed ID: 17089659
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Climate regime shift and forest loss amplify fire in Amazonian forests.
    Xu X; Jia G; Zhang X; Riley WJ; Xue Y
    Glob Chang Biol; 2020 Oct; 26(10):5874-5885. PubMed ID: 32662146
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impact of intense disturbance on the structure and composition of wet-eucalypt forests: A case study from the Tasmanian 2016 wildfires.
    Lunn TJ; Gerwin M; Buettel JC; Brook BW
    PLoS One; 2018; 13(7):e0200905. PubMed ID: 30028860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.