These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34004140)

  • 61. Assessment of immunity against Yellow Fever virus infections in northeastern Nigeria using three serological assays.
    Baba MM; Yahaya KM; Ezra EM; Adamu M; Kulloma BM; Ikusemoran M; Momoh JP; Oderinde BS
    J Med Virol; 2021 Aug; 93(8):4856-4864. PubMed ID: 33783842
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Yellow Fever Virus: Knowledge Gaps Impeding the Fight Against an Old Foe.
    Douam F; Ploss A
    Trends Microbiol; 2018 Nov; 26(11):913-928. PubMed ID: 29933925
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Preparing for yellow fever vaccination.
    Devi S
    Lancet Infect Dis; 2020 Feb; 20(2):172. PubMed ID: 32006508
    [No Abstract]   [Full Text] [Related]  

  • 64. Sequential Infection with Common Pathogens Promotes Human-like Immune Gene Expression and Altered Vaccine Response.
    Reese TA; Bi K; Kambal A; Filali-Mouhim A; Beura LK; Bürger MC; Pulendran B; Sekaly RP; Jameson SC; Masopust D; Haining WN; Virgin HW
    Cell Host Microbe; 2016 May; 19(5):713-9. PubMed ID: 27107939
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Guiding dengue vaccine development using knowledge gained from the success of the yellow fever vaccine.
    Liang H; Lee M; Jin X
    Cell Mol Immunol; 2016 Jan; 13(1):36-46. PubMed ID: 26435066
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Human cytotoxic T lymphocyte responses to live attenuated 17D yellow fever vaccine: identification of HLA-B35-restricted CTL epitopes on nonstructural proteins NS1, NS2b, NS3, and the structural protein E.
    Co MD; Terajima M; Cruz J; Ennis FA; Rothman AL
    Virology; 2002 Feb; 293(1):151-63. PubMed ID: 11853408
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Preparation and application of yellow fever virus NS1 protein-specific monoclonal antibodies.
    Liu D; Chen D; Zhang T; Yu N; Ren R; Chen Y; Wang C
    J Med Virol; 2021 Jun; 93(6):3374-3382. PubMed ID: 32841419
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dynamics of the cytotoxic T cell response to a model of acute viral infection.
    DeWitt WS; Emerson RO; Lindau P; Vignali M; Snyder TM; Desmarais C; Sanders C; Utsugi H; Warren EH; McElrath J; Makar KW; Wald A; Robins HS
    J Virol; 2015 Apr; 89(8):4517-26. PubMed ID: 25653453
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Immunogenicity and safety of yellow fever vaccine in HIV-1-infected patients.
    Colin de Verdiere N; Durier C; Samri A; Meiffredy V; Launay O; Matheron S; Mercier-Delarue S; Even S; Aboulker JP; Molina JM; Autran B; Simon F;
    AIDS; 2018 Oct; 32(16):2291-2299. PubMed ID: 30096071
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Transcutaneous yellow fever vaccination of subjects with or without atopic dermatitis.
    Slifka MK; Leung DY; Hammarlund E; Raué HP; Simpson EL; Tofte S; Baig-Lewis S; David G; Lynn H; Woolson R; Hata T; Milgrom H; Hanifin J
    J Allergy Clin Immunol; 2014 Feb; 133(2):439-47. PubMed ID: 24331381
    [TBL] [Abstract][Full Text] [Related]  

  • 71. CD4/CD8 Ratio Predicts Yellow Fever Vaccine-Induced Antibody Titers in Virologically Suppressed HIV-Infected Patients.
    Avelino-Silva VI; Miyaji KT; Mathias A; Costa DA; de Carvalho Dias JZ; Lima SB; Simoes M; Freire MS; Caiaffa-Filho HH; Hong MA; Lopes MH; Sartori AM; Kallas EG
    J Acquir Immune Defic Syndr; 2016 Feb; 71(2):189-95. PubMed ID: 26361176
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Serum biomarker profile orchestrating the seroconversion status of patients with autoimmune diseases upon planned primary 17DD Yellow fever vaccination.
    da Costa-Rocha IA; Machado KLLL; Campi-Azevedo AC; Teixeira-Carvalho A; Peruhype-Magalhães V; de Lima SMB; Miranda EH; Trindade GF; Casagrande TZ; Miyamoto ST; Deotti SC; Barbosa RVR; Rocha PCM; Serrano EV; Dinis VG; Gouvêa SA; Gavi MBRO; da Silva LB; Duque RH; Gianordoli APE; Bissoli MF; Gouvea MDPG; Pinto-Neto LFDS; Burian APN; Fantinato FFST; Pileggi GS; da Mota LMH; Valim V; Martins-Filho OA
    Sci Rep; 2021 May; 11(1):10431. PubMed ID: 34001945
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A qualitatively validated mathematical-computational model of the immune response to the yellow fever vaccine.
    Bonin CRB; Fernandes GC; Dos Santos RW; Lobosco M
    BMC Immunol; 2018 May; 19(1):15. PubMed ID: 29801432
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Yellow Fever: Integrating Current Knowledge with Technological Innovations to Identify Strategies for Controlling a Re-Emerging Virus.
    Kleinert RDV; Montoya-Diaz E; Khera T; Welsch K; Tegtmeyer B; Hoehl S; Ciesek S; Brown RJP
    Viruses; 2019 Oct; 11(10):. PubMed ID: 31627415
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The Human NK Cell Response to Yellow Fever Virus 17D Is Primarily Governed by NK Cell Differentiation Independently of NK Cell Education.
    Marquardt N; Ivarsson MA; Blom K; Gonzalez VD; Braun M; Falconer K; Gustafsson R; Fogdell-Hahn A; Sandberg JK; Michaëlsson J
    J Immunol; 2015 Oct; 195(7):3262-72. PubMed ID: 26283480
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Exploratory study of humoral and cellular immunity to 17DD Yellow Fever vaccination in children and adults residents of areas without circulation of Yellow Fever Virus.
    Reis LR; Costa-Rocha IAD; Campi-Azevedo AC; Peruhype-Magalhães V; Coelho-Dos-Reis JG; Costa-Pereira C; Otta DA; Freire LC; Lima SMB; Azevedo AS; Schwarcz WD; Ano Bom APD; Silva AMVD; Souza AF; Castro TDM; Ferroco CLV; Filippis AMB; Nogueira FB; Homma A; Domingues CM; Sousa ESS; Camacho LAB; Maia MLS; Teixeira-Carvalho A; Martins-Filho OA
    Vaccine; 2022 Jan; 40(5):798-810. PubMed ID: 34969545
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Origin and differentiation of human memory CD8 T cells after vaccination.
    Akondy RS; Fitch M; Edupuganti S; Yang S; Kissick HT; Li KW; Youngblood BA; Abdelsamed HA; McGuire DJ; Cohen KW; Alexe G; Nagar S; McCausland MM; Gupta S; Tata P; Haining WN; McElrath MJ; Zhang D; Hu B; Greenleaf WJ; Goronzy JJ; Mulligan MJ; Hellerstein M; Ahmed R
    Nature; 2017 Dec; 552(7685):362-367. PubMed ID: 29236685
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Isolation of a Potently Neutralizing and Protective Human Monoclonal Antibody Targeting Yellow Fever Virus.
    Doyle MP; Genualdi JR; Bailey AL; Kose N; Gainza C; Rodriguez J; Reeder KM; Nelson CA; Jethva PN; Sutton RE; Bombardi RG; Gross ML; Julander JG; Fremont DH; Diamond MS; Crowe JE
    mBio; 2022 Jun; 13(3):e0051222. PubMed ID: 35420472
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Double Lock of a Human Neutralizing and Protective Monoclonal Antibody Targeting the Yellow Fever Virus Envelope.
    Lu X; Xiao H; Li S; Pang X; Song J; Liu S; Cheng H; Li Y; Wang X; Huang C; Guo T; Ter Meulen J; Daffis S; Yan J; Dai L; Rao Z; Klenk HD; Qi J; Shi Y; Gao GF
    Cell Rep; 2019 Jan; 26(2):438-446.e5. PubMed ID: 30625326
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Immunogenicity and duration of protection after yellow fever vaccine in people living with human immunodeficiency virus: a systematic review.
    Martin C; Domingo C; Bottieau E; Buonfrate D; De Wit S; Van Laethem Y; Dauby N
    Clin Microbiol Infect; 2021 Jul; 27(7):958-967. PubMed ID: 33813107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.