These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 34004200)

  • 1. Screening of anti-idiotypic domain antibody from phage library for development of Bt Cry1A simulants.
    Dong S; Guan L; He K; Yang W; Deng W; Yuan S; Feng J
    Int J Biol Macromol; 2021 Jul; 183():1346-1351. PubMed ID: 34004200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-idiotypic single-chain variable fragment antibody partially mimic the functionally spatial structure of Cry2Aa toxin.
    Lin M; Liu Y; Zhang X; Zhong J; Hu X; Xu C; Xie Y; Zhang C; Liang Y; Liu X; Lin J
    Anal Biochem; 2021 Jul; 625():114222. PubMed ID: 33932355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the epitope in cadherin-like receptors involved in Bacillus thuringiensis Cry1A toxin interaction using phage display.
    Gómez I; Oltean DI; Gill SS; Bravo A; Soberón M
    J Biol Chem; 2001 Aug; 276(31):28906-12. PubMed ID: 11384982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phage-Mediated Competitive Chemiluminescent Immunoassay for Detecting Cry1Ab Toxin by Using an Anti-Idiotypic Camel Nanobody.
    Qiu Y; Li P; Dong S; Zhang X; Yang Q; Wang Y; Ge J; Hammock BD; Zhang C; Liu X
    J Agric Food Chem; 2018 Jan; 66(4):950-956. PubMed ID: 29293334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting Design of Human Anti-idiotypic Genetically Engineered Antibody for Simulating the Structure and Insecticidal Function of Bt Cry1C Toxin.
    Xu C; Shen J; Chen W; Sun X; Zhang X; Liu Y; Liu X
    J Agric Food Chem; 2024 Oct; 72(39):21650-21666. PubMed ID: 39294853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cry1A(b)16 toxin from Bacillus thuringiensis: Theoretical refinement of three-dimensional structure and prediction of peptides as molecular markers for detection of genetically modified organisms.
    Plácido A; Coelho A; Abreu Nascimento L; Gomes Vasconcelos A; Fátima Barroso M; Ramos-Jesus J; Costa V; das Chagas Alves Lima F; Delerue-Matos C; Martins Ramos R; Marani MM; Roberto de Souza de Almeida Leite J
    Proteins; 2017 Jul; 85(7):1248-1257. PubMed ID: 28316108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of an Immunized Rabbit Phage Display Library for Selecting High Activity against Bacillus thuringiensis Cry1F Toxin Single-Chain Antibodies.
    Xu C; Zhang C; Zhong J; Hu H; Luo S; Liu X; Zhang X; Liu Y; Liu X
    J Agric Food Chem; 2017 Jul; 65(29):6016-6022. PubMed ID: 28621534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the cellular immune response induced by Bacillus thuringiensis Cry1A toxins in mice: effect of the hydrophobic motif from diphtheria toxin.
    Guerrero GG; Russell WM; Moreno-Fierros L
    Mol Immunol; 2007 Feb; 44(6):1209-17. PubMed ID: 16930715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of anti-idiotypic antibodies mimicking Cry2Aa toxin from an immunized mouse phage display library as potential insecticidal agents against Plutella xylostella.
    Lin M; Liu Y; Shen C; Meng M; Zhang X; Xu C; Jin J; Hu X; Zhu Q; Xie Y; Chen W; Liu X; Lin J
    Biochem Biophys Res Commun; 2024 Jan; 691():149308. PubMed ID: 38029542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacillus thuringiensis Cry1A toxin-binding glycoconjugates present on the brush border membrane and in the peritrophic membrane of the Douglas-fir tussock moth are peritrophins.
    Valaitis AP; Podgwaite JD
    J Invertebr Pathol; 2013 Jan; 112(1):1-8. PubMed ID: 23108174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carrier potential properties of Bacillus thuringiensis Cry1A toxins for a diphtheria toxin epitope.
    Guerrero GG; Moreno-Fierros L
    Scand J Immunol; 2007 Dec; 66(6):610-8. PubMed ID: 17949406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection and application of broad-specificity human domain antibody for simultaneous detection of Bt Cry toxins.
    Xu C; Zhang X; Liu X; Liu Y; Hu X; Zhong J; Zhang C; Liu X
    Anal Biochem; 2016 Nov; 512():70-77. PubMed ID: 27544649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific epitopes of domains II and III of Bacillus thuringiensis Cry1Ab toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta.
    Gómez I; Arenas I; Benitez I; Miranda-Ríos J; Becerril B; Grande R; Almagro JC; Bravo A; Soberón M
    J Biol Chem; 2006 Nov; 281(45):34032-9. PubMed ID: 16968705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design and application of broad-spectrum antibodies for Bt Cry toxins determination.
    Jin J; Chen W; Xu C; Pooe OJ; Xie Y; Shen C; Meng M; Zhu Q; Zhang X; Liu X; Liu Y
    Anal Biochem; 2024 Oct; 693():115584. PubMed ID: 38843975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening and Identification of Anti-Idiotypic Nanobody Capable of Broad-Spectrum Recognition of the Toxin Binding Region of Lepidopteran Cadherins and Mimicking Domain II of Cry2Aa Toxin.
    Shen C; Jin J; Huang Z; Meng M; Lin M; Hu X; Zhu Q; Xu C; Chen W; Lin J; Zhang X; Liu Y; Liu X
    J Agric Food Chem; 2024 Jan; 72(3):1582-1591. PubMed ID: 38221880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of single chain variable fragment (scFv) specific for Cry1C toxin from human single fold scFv libraries.
    Wang Y; Zhang X; Zhang C; Liu Y; Liu X
    Toxicon; 2012 Dec; 60(7):1290-7. PubMed ID: 22982116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical characterization of the third domain from Bacillus thuringiensis Cry1A toxins.
    Vázquez-Padrón RI; Martínez-Gil AF; Ayra-Pardo C; González-Cabrera J; Prieto-Samsonov DL; de la Riva GA
    Biochem Mol Biol Int; 1998 Aug; 45(5):1011-20. PubMed ID: 9739466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of Bacillus thuringiensis Cry1A toxin-binding molecules in gypsy moth larval gut sections using fluorescence microscopy.
    Valaitis AP
    J Invertebr Pathol; 2011 Oct; 108(2):69-75. PubMed ID: 21767544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insect Hsp90 Chaperone Assists Bacillus thuringiensis Cry Toxicity by Enhancing Protoxin Binding to the Receptor and by Protecting Protoxin from Gut Protease Degradation.
    García-Gómez BI; Cano SN; Zagal EE; Dantán-Gonzalez E; Bravo A; Soberón M
    mBio; 2019 Nov; 10(6):. PubMed ID: 31772047
    [No Abstract]   [Full Text] [Related]  

  • 20. Production and characterization of a single-chain variable fragment antibody from a site-saturation mutagenesis library derived from the anti-Cry1A monoclonal antibody.
    Dong S; Gao M; Bo Z; Guan L; Hu X; Zhang H; Liu B; Li P; He K; Liu X; Zhang C
    Int J Biol Macromol; 2020 Apr; 149():60-69. PubMed ID: 31954781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.