BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34004340)

  • 1. Coregulation of gene expression by White collar 1 and phytochrome in Ustilago maydis.
    Brych A; Haas FB; Parzefall K; Panzer S; Schermuly J; Altmüller J; Engelsdorf T; Terpitz U; Rensing SA; Kiontke S; Batschauer A
    Fungal Genet Biol; 2021 Jul; 152():103570. PubMed ID: 34004340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the photoreceptors involved in the light-depending basidiocarp formation in Ustilago maydis.
    Sánchez-Arreguin JA; Cabrera-Ponce JL; León-Ramírez CG; Camargo-Escalante MO; Ruiz-Herrera J
    Arch Microbiol; 2020 Jan; 202(1):93-103. PubMed ID: 31485712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. White collar 1-induced photolyase expression contributes to UV-tolerance of Ustilago maydis.
    Brych A; Mascarenhas J; Jaeger E; Charkiewicz E; Pokorny R; Bölker M; Doehlemann G; Batschauer A
    Microbiologyopen; 2016 Apr; 5(2):224-43. PubMed ID: 26687452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. urbs1, a gene regulating siderophore biosynthesis in Ustilago maydis, encodes a protein similar to the erythroid transcription factor GATA-1.
    Voisard C; Wang J; McEvoy JL; Xu P; Leong SA
    Mol Cell Biol; 1993 Nov; 13(11):7091-100. PubMed ID: 8413298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-dependent gene activation in Aspergillus nidulans is strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation.
    Hedtke M; Rauscher S; Röhrig J; Rodríguez-Romero J; Yu Z; Fischer R
    Mol Microbiol; 2015 Aug; 97(4):733-45. PubMed ID: 25980340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red- and Blue-Light Sensing in the Plant Pathogen Alternaria alternata Depends on Phytochrome and the White-Collar Protein LreA.
    Igbalajobi O; Yu Z; Fischer R
    mBio; 2019 Apr; 10(2):. PubMed ID: 30967462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opsin 1 and Opsin 2 of the Corn Smut Fungus
    Panzer S; Brych A; Batschauer A; Terpitz U
    Front Microbiol; 2019; 10():735. PubMed ID: 31024506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide analyses of light-regulated genes in Aspergillus nidulans reveal a complex interplay between different photoreceptors and novel photoreceptor functions.
    Yu Z; Streng C; Seibeld RF; Igbalajobi OA; Leister K; Ingelfinger J; Fischer R
    PLoS Genet; 2021 Oct; 17(10):e1009845. PubMed ID: 34679095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic analysis of the dimorphic transition of Ustilago maydis induced in vitro by a change in pH.
    Martínez-Soto D; Ruiz-Herrera J
    Fungal Genet Biol; 2013; 58-59():116-25. PubMed ID: 23994320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytohormone sensing in the biotrophic fungus Ustilago maydis - the dual role of the transcription factor Rss1.
    Rabe F; Seitner D; Bauer L; Navarrete F; Czedik-Eysenberg A; Rabanal FA; Djamei A
    Mol Microbiol; 2016 Oct; 102(2):290-305. PubMed ID: 27387604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The RIM101/pacC homologue from the basidiomycete Ustilago maydis is functional in multiple pH-sensitive phenomena.
    Aréchiga-Carvajal ET; Ruiz-Herrera J
    Eukaryot Cell; 2005 Jun; 4(6):999-1008. PubMed ID: 15947192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutation avoidance and DNA repair proficiency in Ustilago maydis are differentially lost with progressive truncation of the REC1 gene product.
    Onel K; Thelen MP; Ferguson DO; Bennett RL; Holloman WK
    Mol Cell Biol; 1995 Oct; 15(10):5329-38. PubMed ID: 7565682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BRCA2 homolog required for proficiency in DNA repair, recombination, and genome stability in Ustilago maydis.
    Kojic M; Kostrub CF; Buchman AR; Holloman WK
    Mol Cell; 2002 Sep; 10(3):683-91. PubMed ID: 12408834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence.
    Molina L; Kahmann R
    Plant Cell; 2007 Jul; 19(7):2293-309. PubMed ID: 17616735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a novel member of the pH responsive pathway Pal/Rim in Ustilago maydis.
    Cervantes-Montelongo JA; Ruiz-Herrera J
    J Basic Microbiol; 2019 Jan; 59(1):14-23. PubMed ID: 30357888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A MADS-box homologue in Ustilago maydis regulates the expression of pheromone-inducible genes but is nonessential.
    Krüger J; Aichinger C; Kahmann R; Bölker M
    Genetics; 1997 Dec; 147(4):1643-52. PubMed ID: 9409827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The posttranscriptional machinery of Ustilago maydis.
    Feldbrügge M; Zarnack K; Vollmeister E; Baumann S; Koepke J; König J; Münsterkötter M; Mannhaupt G
    Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S40-6. PubMed ID: 18468465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The UMAG_00031 gene from Ustilago maydis encodes a putative membrane protein involved in pH control and morphogenesis.
    Cervantes-Montelongo JA; Silva-Martínez GA; Pliego-Arreaga R; Guevara-Olvera L; Ruiz-Herrera J
    Arch Microbiol; 2020 Oct; 202(8):2221-2232. PubMed ID: 32529509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of Ustilago maydis to extreme pH values: A transcriptomic analysis.
    Cervantes-Montelongo JA; Aréchiga-Carvajal ET; Ruiz-Herrera J
    J Basic Microbiol; 2016 Nov; 56(11):1222-1233. PubMed ID: 27545298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of the Ustilago maydis ortholog of the Aspergillus sporulation regulator medA affects mating and virulence through pheromone response.
    Chacko N; Gold S
    Fungal Genet Biol; 2012 Jun; 49(6):426-32. PubMed ID: 22537792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.