BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 34004501)

  • 21. Generative Adversarial Networks for Robust Breast Cancer Prognosis Prediction with Limited Data Size.
    Hsu TC; Lin C
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5669-5672. PubMed ID: 33019263
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Generative Adversarial Network (GAN) Technique for Internet of Medical Things Data.
    Vaccari I; Orani V; Paglialonga A; Cambiaso E; Mongelli M
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34071944
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Realistic generation of diffusion-weighted magnetic resonance brain images with deep generative models.
    Hirte AU; Platscher M; Joyce T; Heit JJ; Tranvinh E; Federau C
    Magn Reson Imaging; 2021 Sep; 81():60-66. PubMed ID: 34116133
    [TBL] [Abstract][Full Text] [Related]  

  • 24. fNIRS-GANs: data augmentation using generative adversarial networks for classifying motor tasks from functional near-infrared spectroscopy.
    Nagasawa T; Sato T; Nambu I; Wada Y
    J Neural Eng; 2020 Feb; 17(1):016068. PubMed ID: 31945755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spiking generative adversarial network with attention scoring decoding.
    Feng L; Zhao D; Zeng Y
    Neural Netw; 2024 Jun; 178():106423. PubMed ID: 38906053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Classification of Non-tumorous Facial Pigmentation Disorders Using Generative Adversarial Networks and Improved SMOTE.
    Peng J; Gao R; Thng S; Huang W; Lin Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3770-3773. PubMed ID: 34892056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple brain networks support processing speed abilities of patients with multiple sclerosis.
    Manca R; Mitolo M; Stabile MR; Bevilacqua F; Sharrack B; Venneri A
    Postgrad Med; 2019 Sep; 131(7):523-532. PubMed ID: 31478421
    [No Abstract]   [Full Text] [Related]  

  • 28. Generation of synthetic EEG data for training algorithms supporting the diagnosis of major depressive disorder.
    Carrle FP; Hollenbenders Y; Reichenbach A
    Front Neurosci; 2023; 17():1219133. PubMed ID: 37849893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generative adversarial network in medical imaging: A review.
    Yi X; Walia E; Babyn P
    Med Image Anal; 2019 Dec; 58():101552. PubMed ID: 31521965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Data augmentation for Human Activity Recognition with Generative Adversarial Networks.
    Lupion M; Cruciani F; Cleland I; Nugent C; Ortigosa PM
    IEEE J Biomed Health Inform; 2024 Feb; PP():. PubMed ID: 38345954
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generative adversarial networks with decoder-encoder output noises.
    Zhong G; Gao W; Liu Y; Yang Y; Wang DH; Huang K
    Neural Netw; 2020 Jul; 127():19-28. PubMed ID: 32315932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Augmentation of FTIR spectral datasets using Wasserstein generative adversarial networks for cancer liquid biopsies.
    McHardy RG; Antoniou G; Conn JJA; Baker MJ; Palmer DS
    Analyst; 2023 Aug; 148(16):3860-3869. PubMed ID: 37435822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generating Hyperspectral Skin Cancer Imagery using Generative Adversarial Neural Network.
    Annala L; Neittaanmaki N; Paoli J; Zaar O; Polonen I
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1600-1603. PubMed ID: 33018300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Generative Neighborhood-Based Deep Autoencoder for Robust Imbalanced Classification.
    Troullinou E; Tsagkatakis G; Losonczy A; Poirazi P; Tsakalides P
    IEEE Trans Artif Intell; 2024 Jan; 5(1):80-91. PubMed ID: 38500544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimating Effective Connectivity by Recurrent Generative Adversarial Networks.
    Ji J; Liu J; Han L; Wang F
    IEEE Trans Med Imaging; 2021 Dec; 40(12):3326-3336. PubMed ID: 34038358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An EEG-Based Transfer Learning Method for Cross-Subject Fatigue Mental State Prediction.
    Zeng H; Li X; Borghini G; Zhao Y; Aricò P; Di Flumeri G; Sciaraffa N; Zakaria W; Kong W; Babiloni F
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding Deep Convolutional Networks for Biomedical Imaging: A Practical Tutorial.
    Huang D; Feng M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():857-863. PubMed ID: 31946030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generative Adversarial Network-Based Data Augmentation for Enhancing Wireless Physical Layer Authentication.
    Alhoraibi L; Alghazzawi D; Alhebshi R
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine Learning Data Augmentation Strategy for Electron Energy Loss Spectroscopy: Generative Adversarial Networks.
    Del-Pozo-Bueno D; Kepaptsoglou D; Ramasse QM; Peiró F; Estradé S
    Microsc Microanal; 2024 Apr; 30(2):278-293. PubMed ID: 38684097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks.
    Sandfort V; Yan K; Pickhardt PJ; Summers RM
    Sci Rep; 2019 Nov; 9(1):16884. PubMed ID: 31729403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.