BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 34004501)

  • 41. Statistical machine learning to identify traumatic brain injury (TBI) from structural disconnections of white matter networks.
    Mitra J; Shen KK; Ghose S; Bourgeat P; Fripp J; Salvado O; Pannek K; Taylor DJ; Mathias JL; Rose S
    Neuroimage; 2016 Apr; 129():247-259. PubMed ID: 26827816
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fully Automatic Arteriovenous Segmentation in Retinal Images via Topology-Aware Generative Adversarial Networks.
    Yang J; Dong X; Hu Y; Peng Q; Tao G; Ou Y; Cai H; Yang X
    Interdiscip Sci; 2020 Sep; 12(3):323-334. PubMed ID: 32725575
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Seismic Data Augmentation Based on Conditional Generative Adversarial Networks.
    Li Y; Ku B; Zhang S; Ahn JK; Ko H
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33266072
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Generative adversarial networks with mixture of t-distributions noise for diverse image generation.
    Sun J; Zhong G; Chen Y; Liu Y; Li T; Huang K
    Neural Netw; 2020 Feb; 122():374-381. PubMed ID: 31765986
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Data augmentation-based conditional Wasserstein generative adversarial network-gradient penalty for XSS attack detection system.
    Mokbal FMM; Wang D; Wang X; Fu L
    PeerJ Comput Sci; 2020; 6():e328. PubMed ID: 33816978
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Brain multigraph prediction using topology-aware adversarial graph neural network.
    Bessadok A; Mahjoub MA; Rekik I
    Med Image Anal; 2021 Aug; 72():102090. PubMed ID: 34004494
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Arrhythmias Classification Using Short-Time Fourier Transform and GAN Based Data Augmentation.
    Lan T; Hu Q; Liu X; He K; Yang C
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():308-311. PubMed ID: 33017990
    [TBL] [Abstract][Full Text] [Related]  

  • 48. GP-GAN: Brain tumor growth prediction using stacked 3D generative adversarial networks from longitudinal MR Images.
    Elazab A; Wang C; Gardezi SJS; Bai H; Hu Q; Wang T; Chang C; Lei B
    Neural Netw; 2020 Dec; 132():321-332. PubMed ID: 32977277
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Generating ultrasonic images indistinguishable from real images using Generative Adversarial Networks.
    Posilović L; Medak D; Subašić M; Budimir M; Lončarić S
    Ultrasonics; 2022 Feb; 119():106610. PubMed ID: 34735930
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigating object compositionality in Generative Adversarial Networks.
    van Steenkiste S; Kurach K; Schmidhuber J; Gelly S
    Neural Netw; 2020 Oct; 130():309-325. PubMed ID: 32736226
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Generative adversarial networks for reconstructing natural images from brain activity.
    Seeliger K; Güçlü U; Ambrogioni L; Güçlütürk Y; van Gerven MAJ
    Neuroimage; 2018 Nov; 181():775-785. PubMed ID: 30031932
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A method for machine learning generation of realistic synthetic datasets for validating healthcare applications.
    Arvanitis TN; White S; Harrison S; Chaplin R; Despotou G
    Health Informatics J; 2022; 28(2):14604582221077000. PubMed ID: 35414269
    [TBL] [Abstract][Full Text] [Related]  

  • 53. TumorGAN: A Multi-Modal Data Augmentation Framework for Brain Tumor Segmentation.
    Li Q; Yu Z; Wang Y; Zheng H
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32731598
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On Urinary Bladder Cancer Diagnosis: Utilization of Deep Convolutional Generative Adversarial Networks for Data Augmentation.
    Lorencin I; Baressi Šegota S; Anđelić N; Mrzljak V; Ćabov T; Španjol J; Car Z
    Biology (Basel); 2021 Feb; 10(3):. PubMed ID: 33652727
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks.
    Ribalta Lorenzo P; Nalepa J; Bobek-Billewicz B; Wawrzyniak P; Mrukwa G; Kawulok M; Ulrych P; Hayball MP
    Comput Methods Programs Biomed; 2019 Jul; 176():135-148. PubMed ID: 31200901
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Tutorial on Generative Adversarial Networks with Application to Classification of Imbalanced Data.
    Huang Y; Fields KG; Ma Y
    Stat Anal Data Min; 2022 Oct; 15(5):543-552. PubMed ID: 36199763
    [TBL] [Abstract][Full Text] [Related]  

  • 57. One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks.
    Valverde S; Salem M; Cabezas M; Pareto D; Vilanova JC; Ramió-Torrentà L; Rovira À; Salvi J; Oliver A; Lladó X
    Neuroimage Clin; 2019; 21():101638. PubMed ID: 30555005
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unsupervised Domain Adaptation for Facial Expression Recognition Using Generative Adversarial Networks.
    Wang X; Wang X; Ni Y
    Comput Intell Neurosci; 2018; 2018():7208794. PubMed ID: 30111995
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Image-Based Automated Species Identification: Can Virtual Data Augmentation Overcome Problems of Insufficient Sampling?
    Klasen M; Ahrens D; Eberle J; Steinhage V
    Syst Biol; 2022 Feb; 71(2):320-333. PubMed ID: 34143222
    [TBL] [Abstract][Full Text] [Related]  

  • 60. AI Radar Sensor: Creating Radar Depth Sounder Images Based on Generative Adversarial Network.
    Rahnemoonfar M; Johnson J; Paden J
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31842359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.