These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 34004501)

  • 61. Generating synthetic clinical data that capture class imbalanced distributions with generative adversarial networks: Example using antiretroviral therapy for HIV.
    Kuo NI; Garcia F; Sönnerborg A; Böhm M; Kaiser R; Zazzi M; ; Polizzotto M; Jorm L; Barbieri S
    J Biomed Inform; 2023 Aug; 144():104436. PubMed ID: 37451495
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Generating bulk RNA-Seq gene expression data based on generative deep learning models and utilizing it for data augmentation.
    Wang Y; Chen Q; Shao H; Zhang R; Shen H
    Comput Biol Med; 2024 Feb; 169():107828. PubMed ID: 38101117
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review.
    Kebaili A; Lapuyade-Lahorgue J; Ruan S
    J Imaging; 2023 Apr; 9(4):. PubMed ID: 37103232
    [TBL] [Abstract][Full Text] [Related]  

  • 64. DeephESC 2.0: Deep Generative Multi Adversarial Networks for improving the classification of hESC.
    Theagarajan R; Bhanu B
    PLoS One; 2019; 14(3):e0212849. PubMed ID: 30840685
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Generative deep learning applied to biomechanics: A new augmentation technique for motion capture datasets.
    Bicer M; Phillips ATM; Melis A; McGregor AH; Modenese L
    J Biomech; 2022 Nov; 144():111301. PubMed ID: 36201910
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Path Generator with Unpaired Samples Employing Generative Adversarial Networks.
    Maldonado-Romo J; Maldonado-Romo A; Aldape-Pérez M
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502113
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Creating artificial human genomes using generative neural networks.
    Yelmen B; Decelle A; Ongaro L; Marnetto D; Tallec C; Montinaro F; Furtlehner C; Pagani L; Jay F
    PLoS Genet; 2021 Feb; 17(2):e1009303. PubMed ID: 33539374
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Adversarial symmetric GANs: Bridging adversarial samples and adversarial networks.
    Liu F; Xu M; Li G; Pei J; Shi L; Zhao R
    Neural Netw; 2021 Jan; 133():148-156. PubMed ID: 33217683
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Generative Model of Brain Microbleeds for MRI Detection of Vascular Marker of Neurodegenerative Diseases.
    Momeni S; Fazlollahi A; Lebrat L; Yates P; Rowe C; Gao Y; Liew AW; Salvado O
    Front Neurosci; 2021; 15():778767. PubMed ID: 34975381
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Increasing prediction accuracy of pathogenic staging by sample augmentation with a GAN.
    Kwon C; Park S; Ko S; Ahn J
    PLoS One; 2021; 16(4):e0250458. PubMed ID: 33905431
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Diffusion tensor imaging of normal-appearing cervical spinal cords in patients with multiple sclerosis: Correlations with clinical evaluation and cerebral diffusion tensor imaging changes. Preliminary experience.
    Wolańczyk M; Bladowska J; Kołtowska A; Pokryszko-Dragan A; Podgórski P; Budrewicz S; Sąsiadek M
    Adv Clin Exp Med; 2020 Apr; 29(4):441-448. PubMed ID: 32369275
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Progressive brain rich-club network disruption from clinically isolated syndrome towards multiple sclerosis.
    Shu N; Duan Y; Huang J; Ren Z; Liu Z; Dong H; Barkhof F; Li K; Liu Y
    Neuroimage Clin; 2018; 19():232-239. PubMed ID: 30035017
    [TBL] [Abstract][Full Text] [Related]  

  • 73. SynSigGAN: Generative Adversarial Networks for Synthetic Biomedical Signal Generation.
    Hazra D; Byun YC
    Biology (Basel); 2020 Dec; 9(12):. PubMed ID: 33287366
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Generative adversarial network based data augmentation and gender-last training strategy with application to bone age assessment.
    Su L; Fu X; Hu Q
    Comput Methods Programs Biomed; 2021 Nov; 212():106456. PubMed ID: 34656013
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Improving Image-Based Plant Disease Classification With Generative Adversarial Network Under Limited Training Set.
    Bi L; Hu G
    Front Plant Sci; 2020; 11():583438. PubMed ID: 33343595
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Generative Adversarial Networks-Based Semi-Supervised Automatic Modulation Recognition for Cognitive Radio Networks.
    Li M; Li O; Liu G; Zhang C
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30428617
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Few-shot image generation with reverse contrastive learning.
    Gou Y; Li M; Zhang Y; He Z; He Y
    Neural Netw; 2024 Jan; 169():154-164. PubMed ID: 37890365
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Generation and evaluation of synthetic patient data.
    Goncalves A; Ray P; Soper B; Stevens J; Coyle L; Sales AP
    BMC Med Res Methodol; 2020 May; 20(1):108. PubMed ID: 32381039
    [TBL] [Abstract][Full Text] [Related]  

  • 79. MS-ACGAN: A modified auxiliary classifier generative adversarial network for schizophrenia's samples augmentation based on microarray gene expression data.
    Jahanyar B; Tabatabaee H; Rowhanimanesh A
    Comput Biol Med; 2023 Aug; 162():107024. PubMed ID: 37263150
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Generating photo-realistic training data to improve face recognition accuracy.
    Sáez Trigueros D; Meng L; Hartnett M
    Neural Netw; 2021 Feb; 134():86-94. PubMed ID: 33291019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.