BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 34004544)

  • 1. A dry electroencephalogram electrode for applications in steady-state visual evoked potential-based brain-computer interface systems.
    Li P; Yin C; Li M; Li H; Yang B
    Biosens Bioelectron; 2021 Sep; 187():113326. PubMed ID: 34004544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Pre-Gelled EEG Electrode and Its Application in SSVEP-Based BCI.
    Pei W; Wu X; Zhang X; Zha A; Tian S; Wang Y; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():843-850. PubMed ID: 35324444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A High-Speed SSVEP-Based BCI Using Dry EEG Electrodes.
    Xing X; Wang Y; Pei W; Guo X; Liu Z; Wang F; Ming G; Zhao H; Gui Q; Chen H
    Sci Rep; 2018 Oct; 8(1):14708. PubMed ID: 30279463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces.
    Zhu F; Jiang L; Dong G; Gao X; Wang Y
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel semi-dry electrodes for brain-computer interface applications.
    Wang F; Li G; Chen J; Duan Y; Zhang D
    J Neural Eng; 2016 Aug; 13(4):046021. PubMed ID: 27378253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of ear electrodes for SSVEP-based BCI.
    Zhao H; Zheng L; Yuan M; Wang Y; Gao X; Liu R; Pei W
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37336205
    [No Abstract]   [Full Text] [Related]  

  • 8. Comparing the Usability of Alternative EEG Devices to Traditional Electrode Caps for SSVEP-BCI Controlled Assistive Robots.
    Cardoso ASS; Andreasen Struijk LNS; Kaeseler RL; Jochumsen M
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Align and Pool for EEG Headset Domain Adaptation (ALPHA) to Facilitate Dry Electrode Based SSVEP-BCI.
    Liu B; Chen X; Li X; Wang Y; Gao X; Gao S
    IEEE Trans Biomed Eng; 2022 Feb; 69(2):795-806. PubMed ID: 34406934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dry and noncontact EEG sensors for mobile brain-computer interfaces.
    Chi YM; Wang YT; Wang Y; Maier C; Jung TP; Cauwenberghs G
    IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):228-35. PubMed ID: 22180514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyvinyl alcohol/polyacrylamide double-network hydrogel-based semi-dry electrodes for robust electroencephalography recording at hairy scalp for noninvasive brain-computer interfaces.
    Li G; Liu Y; Chen Y; Li M; Song J; Li K; Zhang Y; Hu L; Qi X; Wan X; Liu J; He Q; Zhou H
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36863014
    [No Abstract]   [Full Text] [Related]  

  • 12. Non-contact Wearable EEG Sensors for SSVEP-based Brain Computer Interface Applications.
    Soleymanpour R; Patel C; Kim I
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2016-2019. PubMed ID: 30440796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Smart Helmet for Strategical BCI Applications.
    Ko LW; Chang Y; Wu PL; Tzou HA; Chen SF; Tang SC; Yeh CL; Chen YJ
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible graphene/GO electrode for gel-free EEG.
    Ko LW; Su CH; Liao PL; Liang JT; Tseng YH; Chen SH
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33831852
    [No Abstract]   [Full Text] [Related]  

  • 16. Design and verification of a wearable wireless 64-channel high-resolution EEG acquisition system with wi-fi transmission.
    Lin CT; Wang Y; Chen SF; Huang KC; Liao LD
    Med Biol Eng Comput; 2023 Nov; 61(11):3003-3019. PubMed ID: 37563528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploration of User's Mental State Changes during Performing Brain-Computer Interface.
    Ko LW; Chikara RK; Lee YC; Lin WC
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32503162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing a one-channel BCI system using a dry claw-like electrode.
    Xuhong Guo ; Weihua Pei ; Yijun Wang ; Qiang Gui ; He Zhang ; Xiao Xing ; Yong Huang ; Hongda Chen ; Ruicong Liu ; Yuanyuan Liu
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5693-5696. PubMed ID: 28269547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Sub-Scalp EEG and Endovascular Stent-Electrode Array for Visual Evoked Potential Brain-Computer Interface.
    Mahoney TB; Liu PC; Grayden DB; John SE
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing contact impedance, signal quality and robustness as a function of the cardinality and arrangement of fingers on dry contact EEG electrodes.
    Nathan V; Jafari R
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3755-8. PubMed ID: 25570808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.