These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34005)

  • 21. The probability of quantal secretion along visualized terminal branches at amphibian (Bufo marinus) neuromuscular synapses.
    Bennett MR; Jones P; Lavidis NA
    J Physiol; 1986 Oct; 379():257-74. PubMed ID: 2882019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms in the regulation of neurotransmitter release from brain nerve terminals: current hypotheses.
    Sihra TS; Nichols RA
    Neurochem Res; 1993 Jan; 18(1):47-58. PubMed ID: 8096629
    [No Abstract]   [Full Text] [Related]  

  • 23. Release probability modulates short-term plasticity at a rat giant terminal.
    Oleskevich S; Clements J; Walmsley B
    J Physiol; 2000 Apr; 524 Pt 2(Pt 2):513-23. PubMed ID: 10766930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the secretory activity of single varicosities in the sympathetic nerves innervating the rat tail artery.
    Astrand P; Stjärne L
    J Physiol; 1989 Feb; 409():207-20. PubMed ID: 2573723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A theoretical study of calcium entry in nerve terminals, with application to neurotransmitter release.
    Parnas H; Segel LA
    J Theor Biol; 1981 Jul; 91(1):125-69. PubMed ID: 6117676
    [No Abstract]   [Full Text] [Related]  

  • 26. Probabilistic secretion of quanta at somatic motor-nerve terminals: the fusion-pore model, quantal detection and autoinhibition.
    Thomson PC; Lavidis NA; Robinson J; Bennett MR
    Philos Trans R Soc Lond B Biol Sci; 1995 Aug; 349(1328):197-214. PubMed ID: 8668726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes of quantal transmitter release caused by gadolinium ions at the frog neuromuscular junction.
    Molgó J; del Pozo E; Baños JE; Angaut-Petit D
    Br J Pharmacol; 1991 Sep; 104(1):133-8. PubMed ID: 1686201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Short-term facilitation as a tool to know neuromodulator-induced change in Ca2+ movement in the nerve terminal.
    Kumamoto E
    J Theor Biol; 1991 Apr; 149(3):317-23. PubMed ID: 1676432
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unbiased estimates of quantal release parameters and spatial variation in the probability of neurosecretion.
    Provan SD; Miyamoto MD
    Am J Physiol; 1993 Apr; 264(4 Pt 1):C1051-60. PubMed ID: 8476011
    [TBL] [Abstract][Full Text] [Related]  

  • 30. "Upstream" regulation of the release probability in sympathetic nerve varicosities.
    Stjärne L; Msghina M; Stjärne E
    Neuroscience; 1990; 36(3):571-87. PubMed ID: 1978258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of hypertonic solutions on quantal transmitter release at the crayfish neuromuscular junction.
    Niles WD; Smith DO
    J Physiol; 1982 Aug; 329():185-202. PubMed ID: 6128408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diversity among mouse motor nerve terminals with respect to release transmitter quanta.
    Nishimura M; Tsubaki K; Yagasaki O
    Gen Pharmacol; 1992 Mar; 23(2):165-9. PubMed ID: 1353467
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for two distinct processes in the final stages of neurotransmitter release as detected by binomial analysis in calcium and strontium solutions.
    Searl TJ; Silinsky EM
    J Physiol; 2002 Mar; 539(Pt 3):693-705. PubMed ID: 11897841
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bayesian analysis of the kinetics of quantal transmitter secretion at the neuromuscular junction.
    Saveliev A; Khuzakhmetova V; Samigullin D; Skorinkin A; Kovyazina I; Nikolsky E; Bukharaeva E
    J Comput Neurosci; 2015 Oct; 39(2):119-29. PubMed ID: 26129670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibitory effect of intraterminal lithium on asynchronous release of excitatory quanta induced by veratridine in nerve-muscle synapses of crayfish.
    Finger W; Martin C
    Neurosci Lett; 1987 Dec; 83(1-2):113-7. PubMed ID: 2894620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facilitatory effects of 4-aminopyridine on strontium-mediated evoked and delayed transmitter release from motor nerve terminals.
    Molgó J; Lemeignan M; Guerrero S
    Eur J Pharmacol; 1982 Oct; 84(1-2):1-7. PubMed ID: 6128233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Space and time characteristics of transmitter release at the nerve-electroplaque junction of Torpedo.
    Girod R; Corrèges P; Jacquet J; Dunant Y
    J Physiol; 1993 Nov; 471():129-57. PubMed ID: 8120801
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling of the quantal release at interneuronal synapses: analysis of permissible values of model moments.
    Dityatev AE; Kozhanov VM; Gapanovich SO
    J Neurosci Methods; 1992 Jul; 43(2-3):201-14. PubMed ID: 1328774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the contribution of mathematical models to the understanding of neurotransmitter release.
    Parnas H; Parnas I; Segel LA
    Int Rev Neurobiol; 1990; 32():1-50. PubMed ID: 1981883
    [No Abstract]   [Full Text] [Related]  

  • 40. Phorbol esters and adenosine affect the readily releasable neurotransmitter pool by different mechanisms at amphibian motor nerve endings.
    Searl TJ; Silinsky EM
    J Physiol; 2003 Dec; 553(Pt 2):445-56. PubMed ID: 12972626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.