These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 34005899)

  • 1. What adaptive neuronal networks teach us about power grids.
    Berner R; Yanchuk S; Schöll E
    Phys Rev E; 2021 Apr; 103(4-1):042315. PubMed ID: 34005899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability and control of power grids with diluted network topology.
    Tumash L; Olmi S; Schöll E
    Chaos; 2019 Dec; 29(12):123105. PubMed ID: 31893638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing power grid synchronization and stability through time-delayed feedback control.
    Taher H; Olmi S; Schöll E
    Phys Rev E; 2019 Dec; 100(6-1):062306. PubMed ID: 31962463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spreading of disturbances in realistic models of transmission grids in dependence on topology, inertia and heterogeneity.
    Nnoli KP; Kettemann S
    Sci Rep; 2021 Dec; 11(1):23742. PubMed ID: 34887453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multistability in lossy power grids and oscillator networks.
    Balestra C; Kaiser F; Manik D; Witthaut D
    Chaos; 2019 Dec; 29(12):123119. PubMed ID: 31893663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of network topology on synchrony of oscillatory power grids.
    Rohden M; Sorge A; Witthaut D; Timme M
    Chaos; 2014 Mar; 24(1):013123. PubMed ID: 24697385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronization dynamics of phase oscillators on power grid models.
    Potratzki M; Bröhl T; Rings T; Lehnertz K
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38598675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic organizations and dynamical properties of weakly connected neural oscillators. I. Analysis of a canonical model.
    Hoppensteadt FC; Izhikevich EM
    Biol Cybern; 1996 Aug; 75(2):117-27. PubMed ID: 8855350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cycle flows and multistability in oscillatory networks.
    Manik D; Timme M; Witthaut D
    Chaos; 2017 Aug; 27(8):083123. PubMed ID: 28863499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Desynchronization Transitions in Adaptive Networks.
    Berner R; Vock S; Schöll E; Yanchuk S
    Phys Rev Lett; 2021 Jan; 126(2):028301. PubMed ID: 33512200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control and prediction for blackouts caused by frequency collapse in smart grids.
    Wang C; Grebogi C; Baptista MS
    Chaos; 2016 Sep; 26(9):093119. PubMed ID: 27781449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On synchronization in power-grids modelled as networks of second-order Kuramoto oscillators.
    Grzybowski JM; Macau EE; Yoneyama T
    Chaos; 2016 Nov; 26(11):113113. PubMed ID: 27908000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of coupled oscillator networks with application to microgrid technologies.
    Skardal PS; Arenas A
    Sci Adv; 2015 Aug; 1(7):e1500339. PubMed ID: 26601231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exotic states induced by coevolving connection weights and phases in complex networks.
    Thamizharasan S; Chandrasekar VK; Senthilvelan M; Berner R; Schöll E; Senthilkumar DV
    Phys Rev E; 2022 Mar; 105(3-1):034312. PubMed ID: 35428128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. When three is a crowd: Chaos from clusters of Kuramoto oscillators with inertia.
    Brister BN; Belykh VN; Belykh IV
    Phys Rev E; 2020 Jun; 101(6-1):062206. PubMed ID: 32688588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Searching for small-world and scale-free behaviour in long-term historical data of a real-world power grid.
    Hartmann B; Sugár V
    Sci Rep; 2021 Mar; 11(1):6575. PubMed ID: 33753860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consistency between functional and structural networks of coupled nonlinear oscillators.
    Lin W; Wang Y; Ying H; Lai YC; Wang X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012912. PubMed ID: 26274252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive oscillator networks with conserved overall coupling: sequential firing and near-synchronized states.
    Picallo CB; Riecke H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036206. PubMed ID: 21517574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cascading failures in ac electricity grids.
    Rohden M; Jung D; Tamrakar S; Kettemann S
    Phys Rev E; 2016 Sep; 94(3-1):032209. PubMed ID: 27739704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of Structured Networks of Winfree Oscillators.
    Laing CR; Bläsche C; Means S
    Front Syst Neurosci; 2021; 15():631377. PubMed ID: 33643004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.