These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34005903)

  • 1. High-frequency pacing of scroll waves in a three-dimensional slab model of cardiac tissue.
    Pravdin SF; Nezlobinsky TV; Panfilov AV; Dierckx H
    Phys Rev E; 2021 Apr; 103(4-1):042420. PubMed ID: 34005903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical study of the drift of scroll waves by optical feedback in cardiac tissue.
    Xia YX; Xie LH; He YJ; Pan JT; Panfilov AV; Zhang H
    Phys Rev E; 2023 Dec; 108(6-1):064406. PubMed ID: 38243456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative tension of scroll wave filaments and turbulence in three-dimensional excitable media and application in cardiac dynamics.
    Alonso S; Bär M; Panfilov AV
    Bull Math Biol; 2013 Aug; 75(8):1351-76. PubMed ID: 22829178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drift of Scroll Wave Filaments in an Anisotropic Model of the Left Ventricle of the Human Heart.
    Pravdin S; Dierckx H; Markhasin VS; Panfilov AV
    Biomed Res Int; 2015; 2015():389830. PubMed ID: 26539486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative filament tension in the Luo-Rudy model of cardiac tissue.
    Alonso S; Panfilov AV
    Chaos; 2007 Mar; 17(1):015102. PubMed ID: 17411259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scroll wave with negative filament tension in a model of the left ventricle of the human heart and its overdrive pacing.
    Pravdin SF; Epanchintsev TI; Dierckx H; Panfilov AV
    Phys Rev E; 2021 Sep; 104(3-1):034408. PubMed ID: 34654159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of three-dimensional scroll waves with ribbon-shaped filament as a mechanism of ventricular tachycardia in the isolated rabbit heart.
    Efimov IR; Sidorov V; Cheng Y; Wollenzier B
    J Cardiovasc Electrophysiol; 1999 Nov; 10(11):1452-62. PubMed ID: 10571365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative stable scroll waves and conversion of autowave turbulence.
    Foulkes AJ; Barkley D; Biktashev VN; Biktasheva IV
    Chaos; 2010 Dec; 20(4):043136. PubMed ID: 21198106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological charge-density-vector method of identifying filaments of scroll waves.
    He YJ; Xia YX; Mei JT; Zhou K; Jiang C; Pan JT; Zheng D; Zheng B; Zhang H
    Phys Rev E; 2023 Jan; 107(1-1):014217. PubMed ID: 36797968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negative filament tension at high excitability in a model of cardiac tissue.
    Alonso S; Panfilov AV
    Phys Rev Lett; 2008 May; 100(21):218101. PubMed ID: 18518639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scroll waves in isotropic excitable media: linear instabilities, bifurcations, and restabilized states.
    Henry H; Hakim V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046235. PubMed ID: 12006004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional spiral waves in an excitable reaction system: initiation and dynamics of scroll rings and scroll ring pairs.
    Bánsági T; Steinbock O
    Chaos; 2008 Jun; 18(2):026102. PubMed ID: 18601504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filament Tension and Phase Locking of Meandering Scroll Waves.
    Dierckx H; Biktasheva IV; Verschelde H; Panfilov AV; Biktashev VN
    Phys Rev Lett; 2017 Dec; 119(25):258101. PubMed ID: 29303350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of three-dimensional scroll waves in excitable media from two-dimensional observations using deep neural networks.
    Lebert J; Mittal M; Christoph J
    Phys Rev E; 2023 Jan; 107(1-1):014221. PubMed ID: 36797900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The study of autowave mechanisms of electrocardiogram variability during high frequency arrhythmias: mathematical modeling data].
    Medvinskiĭ AB; Rusakov AV; Moskalenko AV; Fedorov MV; Panfilov AV
    Biofizika; 2003; 48(2):314-23. PubMed ID: 12723358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refraction of scroll-wave filaments at the boundary between two reaction-diffusion media.
    Zemlin CW; Varghese F; Wellner M; Pertsov AM
    Phys Rev Lett; 2015 Mar; 114(11):118303. PubMed ID: 25839316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spiral-wave turbulence and its control in the presence of inhomogeneities in four mathematical models of cardiac tissue.
    Shajahan TK; Nayak AR; Pandit R
    PLoS One; 2009; 4(3):e4738. PubMed ID: 19270753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of pinned scroll waves in cardiac tissues by electric fields in a generic model of three-dimensional excitable media.
    Pan DB; Gao X; Feng X; Pan JT; Zhang H
    Sci Rep; 2016 Feb; 6():21876. PubMed ID: 26905367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scroll-wave dynamics in human cardiac tissue: lessons from a mathematical model with inhomogeneities and fiber architecture.
    Majumder R; Nayak AR; Pandit R
    PLoS One; 2011 Apr; 6(4):e18052. PubMed ID: 21483682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twists of opposite handedness on a scroll wave.
    Dähmlow P; Alonso S; Bär M; Hauser MJ
    Phys Rev Lett; 2013 Jun; 110(23):234102. PubMed ID: 25167496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.