These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34005913)

  • 1. Adsorption trajectories of nonspherical particles at liquid interfaces.
    Morgan SO; Fox J; Lowe C; Adawi AM; Bouillard JG; Stasiuk GJ; Horozov TS; Buzza DMA
    Phys Rev E; 2021 Apr; 103(4-1):042604. PubMed ID: 34005913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of Ellipsoidal Particles at Liquid-Liquid Interfaces.
    Coertjens S; De Dier R; Moldenaers P; Isa L; Vermant J
    Langmuir; 2017 Mar; 33(11):2689-2697. PubMed ID: 28241120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Contact-Line Pinning on the Adsorption of Nonspherical Colloids at Liquid Interfaces.
    Wang A; Rogers WB; Manoharan VN
    Phys Rev Lett; 2017 Sep; 119(10):108004. PubMed ID: 28949187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloidal particle adsorption at liquid interfaces: capillary driven dynamics and thermally activated kinetics.
    Rahmani AM; Wang A; Manoharan VN; Colosqui CE
    Soft Matter; 2016 Aug; 12(30):6365-72. PubMed ID: 27373956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary assembly of microscale ellipsoidal, cuboidal, and spherical particles at interfaces.
    Dasgupta S; Katava M; Faraj M; Auth T; Gompper G
    Langmuir; 2014 Oct; 30(40):11873-82. PubMed ID: 25226046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption trajectories and free-energy separatrices for colloidal particles in contact with a liquid-liquid interface.
    de Graaf J; Dijkstra M; van Roij R
    J Chem Phys; 2010 Apr; 132(16):164902. PubMed ID: 20441305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Paradoxical Behavior of Rough Colloids at Fluid Interfaces.
    Rahman MA; Beltramo PJ
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):35834-35840. PubMed ID: 38924501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotational diffusion of partially wetted colloids at fluid interfaces.
    Stocco A; Chollet B; Wang X; Blanc C; Nobili M
    J Colloid Interface Sci; 2019 Apr; 542():363-369. PubMed ID: 30769259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact-line pinning controls how quickly colloidal particles equilibrate with liquid interfaces.
    Wang A; McGorty R; Kaz DM; Manoharan VN
    Soft Matter; 2016 Nov; 12(43):8958-8967. PubMed ID: 27734049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly and rheology of ellipsoidal particles at interfaces.
    Madivala B; Fransaer J; Vermant J
    Langmuir; 2009 Mar; 25(5):2718-28. PubMed ID: 19437693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillary interactions between particles bound to interfaces, liquid films and biomembranes.
    Kralchevsky PA; Nagayama K
    Adv Colloid Interface Sci; 2000 Mar; 85(2-3):145-92. PubMed ID: 10768480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle contact angles at fluid interfaces: pushing the boundary beyond hard uniform spherical colloids.
    Zanini M; Isa L
    J Phys Condens Matter; 2016 Aug; 28(31):313002. PubMed ID: 27299800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of ellipsoidal particles at fluid-fluid interfaces with an empirical pair potential.
    Luo AM; Vermant J; Ilg P; Zhang Z; Sagis LMC
    J Colloid Interface Sci; 2019 Jan; 534():205-214. PubMed ID: 30227377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the pinning time of a receding contact line under forced wetting conditions.
    Fernández-Toledano JC; Rigaut C; Mastrangeli M; De Coninck J
    J Colloid Interface Sci; 2020 Apr; 565():449-457. PubMed ID: 31982711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using adsorption kinetics to assemble vertically aligned nanorods at liquid interfaces for metamaterial applications.
    Morgan SO; Muravitskaya A; Lowe C; Adawi AM; Bouillard JG; Horozov TS; Stasiuk GJ; Buzza DMA
    Phys Chem Chem Phys; 2022 May; 24(18):11000-11013. PubMed ID: 35467675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Timescales of emulsion formation caused by anisotropic particles.
    Günther F; Frijters S; Harting J
    Soft Matter; 2014 Jul; 10(27):4977-89. PubMed ID: 24888563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of microstructured particles at liquid-liquid interfaces.
    Nonomura Y; Komura S; Tsujii K
    J Phys Chem B; 2006 Jul; 110(26):13124-9. PubMed ID: 16805623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillary Assembly of Anisotropic Particles at Cylindrical Fluid-Fluid Interfaces.
    Eatson JL; Gordon JR; Cegielski P; Giesecke AL; Suckow S; Rao A; Silvestre OF; Liz-Marzán LM; Horozov TS; Buzza DMA
    Langmuir; 2023 May; 39(17):6006-6017. PubMed ID: 37071832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape-Anisotropic Colloids at Interfaces.
    Anjali TG; Basavaraj MG
    Langmuir; 2019 Jan; 35(1):3-20. PubMed ID: 29986588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible Adsorption of Nanoparticles at Surfactant-Laden Liquid-Liquid Interfaces.
    Smits J; Vieira F; Bisswurn B; Rezwan K; Maas M
    Langmuir; 2019 Aug; 35(34):11089-11098. PubMed ID: 31368712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.