These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34005923)

  • 1. Connectedness percolation in the random sequential adsorption packings of elongated particles.
    Lebovka NI; Tatochenko MO; Vygornitskii NV; Eserkepov AV; Akhunzhanov RK; Tarasevich YY
    Phys Rev E; 2021 Apr; 103(4-1):042113. PubMed ID: 34005923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confinement effects on the random sequential adsorption packings of elongated particles in a slit.
    Lebovka NI; Tatochenko MO; Vygornitskii NV; Tarasevich YY
    Phys Rev E; 2021 Nov; 104(5-1):054104. PubMed ID: 34942691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paris car parking problem for partially oriented discorectangles on a line.
    Lebovka NI; Tatochenko MO; Vygornitskii NV; Tarasevich YY
    Phys Rev E; 2020 Jul; 102(1-1):012128. PubMed ID: 32795031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relaxation of saturated random sequential adsorption packings of discorectangles aligned on a line.
    Lebovka NI; Tatochenko MO; Vygornitskii NV; Tarasevich YY
    Phys Rev E; 2021 Dec; 104(6-1):064104. PubMed ID: 35030862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random sequential adsorption of partially ordered discorectangles onto a continuous plane.
    Lebovka NI; Vygornitskii NV; Tarasevich YY
    Phys Rev E; 2020 Aug; 102(2-1):022133. PubMed ID: 32942432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-stage random sequential adsorption of discorectangles and disks on a two-dimensional surface.
    Lebovka N; Petryk M; Tatochenko MO; Vygornitskii NV
    Phys Rev E; 2023 Aug; 108(2-1):024109. PubMed ID: 37723762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical conductivity of a monolayer produced by random sequential adsorption of linear k-mers onto a square lattice.
    Tarasevich YY; Goltseva VA; Laptev VV; Lebovka NI
    Phys Rev E; 2016 Oct; 94(4-1):042112. PubMed ID: 27841486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Irreversible bilayer adsorption of straight semirigid rods on two-dimensional square lattices: Jamming and percolation properties.
    De La Cruz Félix N; Centres PM; Ramirez-Pastor AJ
    Phys Rev E; 2020 Jul; 102(1-1):012153. PubMed ID: 32795003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Percolation of aligned rigid rods on two-dimensional triangular lattices.
    Longone P; Centres PM; Ramirez-Pastor AJ
    Phys Rev E; 2019 Nov; 100(5-1):052104. PubMed ID: 31870027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random sequential adsorption of partially oriented linear k-mers on a square lattice.
    Lebovka NI; Karmazina NN; Tarasevich YY; Laptev VV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061603. PubMed ID: 22304098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of shape anisotropy on percolation of aligned and overlapping objects on lattices.
    K JC; Sasidevan V
    Phys Rev E; 2024 Jun; 109(6-1):064118. PubMed ID: 39020917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural analysis of disordered dimer packings.
    Kurban E; Baule A
    Soft Matter; 2021 Oct; 17(39):8877-8890. PubMed ID: 34542552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of anisotropy and length dispersity on electrical and optical properties of nanowire network based transparent electrodes: a computational study.
    Bharti Y; Malik V; Bhandari P; Aggarwal S
    Nanotechnology; 2024 Oct; 36(1):. PubMed ID: 39348840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Packing fraction of geometric random packings of discretely sized particles.
    Brouwers HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):042301. PubMed ID: 22181207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximally dense random packings of cubes and cuboids via a novel inverse packing method.
    Liu L; Li Z; Jiao Y; Li S
    Soft Matter; 2017 Jan; 13(4):748-757. PubMed ID: 28009885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jammed packings of 3D superellipsoids with tunable packing fraction, coordination number, and ordering.
    Yuan Y; VanderWerf K; Shattuck MD; O'Hern CS
    Soft Matter; 2019 Dec; 15(47):9751-9761. PubMed ID: 31742301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinctive features arising in maximally random jammed packings of superballs.
    Jiao Y; Stillinger FH; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041304. PubMed ID: 20481714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructural characterization of random packings of cubic particles.
    Malmir H; Sahimi M; Tabar MR
    Sci Rep; 2016 Oct; 6():35024. PubMed ID: 27725736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation study of anisotropic random sequential adsorption of extended objects on a triangular lattice.
    Budinski-Petković Lj; Lončarević I; Jakšić ZM; Vrhovac SB; Svrakić NM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051601. PubMed ID: 22181424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of saturated random-sequential-adsorption ellipse packings.
    Abritta P; Hoy RS
    Phys Rev E; 2022 Nov; 106(5-1):054604. PubMed ID: 36559385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.