These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 34005966)

  • 1. Learning physically consistent differential equation models from data using group sparsity.
    Maddu S; Cheeseman BL; Müller CL; Sbalzarini IF
    Phys Rev E; 2021 Apr; 103(4-1):042310. PubMed ID: 34005966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability selection enables robust learning of differential equations from limited noisy data.
    Maddu S; Cheeseman BL; Sbalzarini IF; Müller CL
    Proc Math Phys Eng Sci; 2022 Jun; 478(2262):20210916. PubMed ID: 35756878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning Equations from Biological Data with Limited Time Samples.
    Nardini JT; Lagergren JH; Hawkins-Daarud A; Curtin L; Morris B; Rutter EM; Swanson KR; Flores KB
    Bull Math Biol; 2020 Sep; 82(9):119. PubMed ID: 32909137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining data assimilation and machine learning to build data-driven models for unknown long time dynamics-Applications in cardiovascular modeling.
    Regazzoni F; Chapelle D; Moireau P
    Int J Numer Method Biomed Eng; 2021 Jul; 37(7):e3471. PubMed ID: 33913623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems.
    Beucler T; Pritchard M; Rasp S; Ott J; Baldi P; Gentine P
    Phys Rev Lett; 2021 Mar; 126(9):098302. PubMed ID: 33750168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systems biology informed deep learning for inferring parameters and hidden dynamics.
    Yazdani A; Lu L; Raissi M; Karniadakis GE
    PLoS Comput Biol; 2020 Nov; 16(11):e1007575. PubMed ID: 33206658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Group Sparsity Residual Constraint with Non-Local Priors for Image Restoration.
    Zha Z; Yuan X; Wen B; Zhou J; Zhu C
    IEEE Trans Image Process; 2020 Sep; PP():. PubMed ID: 32903181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpretable whole-brain prediction analysis with GraphNet.
    Grosenick L; Klingenberg B; Katovich K; Knutson B; Taylor JE
    Neuroimage; 2013 May; 72():304-21. PubMed ID: 23298747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stepwise group sparse regression (SGSR): gene-set-based pharmacogenomic predictive models with stepwise selection of functional priors.
    Jang IS; Dienstmann R; Margolin AA; Guinney J
    Pac Symp Biocomput; 2015; 20():32-43. PubMed ID: 25592566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpretable conservation law estimation by deriving the symmetries of dynamics from trained deep neural networks.
    Mototake YI
    Phys Rev E; 2021 Mar; 103(3-1):033303. PubMed ID: 33862698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physically constrained neural networks for inferring physiological system models.
    Ferrante M; Duggento A; Toschi N
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():148-151. PubMed ID: 36086081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian uncertainty quantification for data-driven equation learning.
    Martina-Perez S; Simpson MJ; Baker RE
    Proc Math Phys Eng Sci; 2021 Oct; 477(2254):20210426. PubMed ID: 35153587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise periodic components estimation for chronobiological signals through Bayesian Inference with sparsity enforcing prior.
    Dumitru M; Mohammad-Djafari A; Sain SB
    EURASIP J Bioinform Syst Biol; 2016 Dec; 2016(1):3. PubMed ID: 26834783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sparsity Is Better with Stability: Combining Accuracy and Stability for Model Selection in Brain Decoding.
    Baldassarre L; Pontil M; Mourão-Miranda J
    Front Neurosci; 2017; 11():62. PubMed ID: 28261042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sparse Bayesian modeling with adaptive kernel learning.
    Tzikas DG; Likas AC; Galatsanos NP
    IEEE Trans Neural Netw; 2009 Jun; 20(6):926-37. PubMed ID: 19423438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Preference-Based Multiobjective Evolutionary Approach for Sparse Optimization.
    Li H; Zhang Q; Deng J; Xu ZB
    IEEE Trans Neural Netw Learn Syst; 2018 May; 29(5):1716-1731. PubMed ID: 28368832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerated exponential parameterization of T2 relaxation with model-driven low rank and sparsity priors (MORASA).
    Peng X; Ying L; Liu Y; Yuan J; Liu X; Liang D
    Magn Reson Med; 2016 Dec; 76(6):1865-1878. PubMed ID: 26762702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpretable machine learning for inferring the phase boundaries in a nonequilibrium system.
    Casert C; Vieijra T; Nys J; Ryckebusch J
    Phys Rev E; 2019 Feb; 99(2-1):023304. PubMed ID: 30934273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatio Temporal EEG Source Imaging with the Hierarchical Bayesian Elastic Net and Elitist Lasso Models.
    Paz-Linares D; Vega-Hernández M; Rojas-López PA; Valdés-Hernández PA; Martínez-Montes E; Valdés-Sosa PA
    Front Neurosci; 2017; 11():635. PubMed ID: 29200994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collocation-based sparse estimation for constructing dynamic gene networks.
    Shimamura T; Imoto S; Nagasaki M; Yamauchi M; Yamaguchi R; Fujita A; Tamada Y; Gotoh N; Miyano S
    Genome Inform; 2010; 24():164-78. PubMed ID: 22081598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.