These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 34005969)
1. Arnold tongues in oscillator systems with nonuniform spatial driving. Golden A; Sgro AE; Mehta P Phys Rev E; 2021 Apr; 103(4-1):042211. PubMed ID: 34005969 [TBL] [Abstract][Full Text] [Related]
2. Resonant and nonresonant patterns in forced oscillators. Marts B; Hagberg A; Meron E; Lin AL Chaos; 2006 Sep; 16(3):037113. PubMed ID: 17014247 [TBL] [Abstract][Full Text] [Related]
3. Phase reduction beyond the first order: The case of the mean-field complex Ginzburg-Landau equation. León I; Pazó D Phys Rev E; 2019 Jul; 100(1-1):012211. PubMed ID: 31499758 [TBL] [Abstract][Full Text] [Related]
4. Phase-frequency model of strongly pulse-coupled Belousov-Zhabotinsky oscillators. Horváth V; Kutner DJ; Zeng MD; Epstein IR Chaos; 2019 Feb; 29(2):023128. PubMed ID: 30823715 [TBL] [Abstract][Full Text] [Related]
5. Stability diagram for the forced Kuramoto model. Childs LM; Strogatz SH Chaos; 2008 Dec; 18(4):043128. PubMed ID: 19123638 [TBL] [Abstract][Full Text] [Related]
6. Simple model for synchronization of two Belousov-Zhabotinsky gels interacting mechanically. Sukegawa T; Yamada Y; Maeda S J Chem Phys; 2024 Mar; 160(10):. PubMed ID: 38465685 [TBL] [Abstract][Full Text] [Related]
7. Competition between global feedback and diffusion in coupled Belousov-Zhabotinsky oscillators. Ohno K; Ogawa T; Suematsu NJ Phys Rev E; 2019 Jan; 99(1-1):012208. PubMed ID: 30780237 [TBL] [Abstract][Full Text] [Related]
8. Partial synchronization and community switching in phase-oscillator networks and its analysis based on a bidirectional, weighted chain of three oscillators. Kato M; Kori H Phys Rev E; 2023 Jan; 107(1-1):014210. PubMed ID: 36797893 [TBL] [Abstract][Full Text] [Related]
9. Synchronization of a Passive Oscillator and a Liquid Crystal Elastomer Self-Oscillator Powered by Steady Illumination. Li K; Gan F; Du C; Cai G; Liu J Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956572 [TBL] [Abstract][Full Text] [Related]
10. Kuramoto model with coupling through an external medium. Schwab DJ; Plunk GG; Mehta P Chaos; 2012 Dec; 22(4):043139. PubMed ID: 23278074 [TBL] [Abstract][Full Text] [Related]
11. Synchronization of Belousov-Zhabotinsky oscillators with electrochemical coupling in a spontaneous process. Liu Y; Pérez-Mercader J; Kiss IZ Chaos; 2022 Sep; 32(9):093128. PubMed ID: 36182363 [TBL] [Abstract][Full Text] [Related]
12. Discrete and periodic complex Ginzburg-Landau equation for a hydrodynamic active lattice. Thomson SJ; Durey M; Rosales RR Phys Rev E; 2021 Jun; 103(6-1):062215. PubMed ID: 34271671 [TBL] [Abstract][Full Text] [Related]
13. Isochronal synchrony and bidirectional communication with delay-coupled nonlinear oscillators. Zhou BB; Roy R Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026205. PubMed ID: 17358403 [TBL] [Abstract][Full Text] [Related]
14. Synchronization in populations of globally coupled oscillators with inertial effects. Acebron JA; Bonilla LL; Spigler R Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt A):3437-54. PubMed ID: 11088845 [TBL] [Abstract][Full Text] [Related]
15. Scaling and synchronization in a ring of diffusively coupled nonlinear oscillators. Senthilkumar DV; Muruganandam P; Lakshmanan M; Kurths J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066219. PubMed ID: 20866513 [TBL] [Abstract][Full Text] [Related]
16. Novel modes of synchronization in star networks of coupled chemical oscillators. Mersing D; Tyler SA; Ponboonjaroenchai B; Tinsley MR; Showalter K Chaos; 2021 Sep; 31(9):093127. PubMed ID: 34598462 [TBL] [Abstract][Full Text] [Related]
17. Plain and oscillatory solitons of the cubic complex Ginzburg-Landau equation with nonlinear gradient terms. Facão M; Carvalho MI Phys Rev E; 2017 Oct; 96(4-1):042220. PubMed ID: 29347498 [TBL] [Abstract][Full Text] [Related]