These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 34005996)

  • 21. Influential nodes identification using network local structural properties.
    Wang B; Zhang J; Dai J; Sheng J
    Sci Rep; 2022 Feb; 12(1):1833. PubMed ID: 35115582
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks.
    Riera-Fernández P; Munteanu CR; Escobar M; Prado-Prado F; Martín-Romalde R; Pereira D; Villalba K; Duardo-Sánchez A; González-Díaz H
    J Theor Biol; 2012 Jan; 293():174-88. PubMed ID: 22037044
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A GPU-based algorithm for fast node label learning in large and unbalanced biomolecular networks.
    Frasca M; Grossi G; Gliozzo J; Mesiti M; Notaro M; Perlasca P; Petrini A; Valentini G
    BMC Bioinformatics; 2018 Oct; 19(Suppl 10):353. PubMed ID: 30367594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks.
    Li Y; Gong G; Li N
    PLoS One; 2018; 13(3):e0193827. PubMed ID: 29554140
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An algorithm for the reduction of genome-scale metabolic network models to meaningful core models.
    Erdrich P; Steuer R; Klamt S
    BMC Syst Biol; 2015 Aug; 9():48. PubMed ID: 26286864
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identifying influential spreaders in complex networks by propagation probability dynamics.
    Chen DB; Sun HL; Tang Q; Tian SZ; Xie M
    Chaos; 2019 Mar; 29(3):033120. PubMed ID: 30927850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new technique for influence maximization on social networks using a moth-flame optimization algorithm.
    Cui Q; Liu F
    Heliyon; 2023 Nov; 9(11):e22191. PubMed ID: 38058635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RBF-network based sparse signal recovery algorithm for compressed sensing reconstruction.
    Vidya L; Vivekanand V; Shyamkumar U; Mishra D
    Neural Netw; 2015 Mar; 63():66-78. PubMed ID: 25499174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-GPU implementation of a VMAT treatment plan optimization algorithm.
    Tian Z; Peng F; Folkerts M; Tan J; Jia X; Jiang SB
    Med Phys; 2015 Jun; 42(6):2841-52. PubMed ID: 26127037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification.
    Guo WF; Zhang SW; Shi QQ; Zhang CM; Zeng T; Chen L
    BMC Genomics; 2018 Jan; 19(Suppl 1):924. PubMed ID: 29363426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Critical controllability analysis of directed biological networks using efficient graph reduction.
    Ishitsuka M; Akutsu T; Nacher JC
    Sci Rep; 2017 Oct; 7(1):14361. PubMed ID: 29084972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A causal discovery algorithm based on the prior selection of leaf nodes.
    Zeng Y; Hao Z; Cai R; Xie F; Ou L; Huang R
    Neural Netw; 2020 Apr; 124():130-145. PubMed ID: 31991308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distributed Density Estimation Based on a Mixture of Factor Analyzers in a Sensor Network.
    Wei X; Li C; Zhou L; Zhao L
    Sensors (Basel); 2015 Aug; 15(8):19047-68. PubMed ID: 26251903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An efficient algorithm to integrate network and attribute data for gene function prediction.
    Vembu S; Morris Q
    Pac Symp Biocomput; 2014; ():388-99. PubMed ID: 24297564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of dynamic expansion tree for finding large network motifs in biological networks.
    Patra S; Mohapatra A
    PeerJ; 2019; 7():e6917. PubMed ID: 31149400
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Efficient Steady-State Analysis Method for Large Boolean Networks with High Maximum Node Connectivity.
    Hong C; Hwang J; Cho KH; Shin I
    PLoS One; 2015; 10(12):e0145734. PubMed ID: 26716694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A time series driven decomposed evolutionary optimization approach for reconstructing large-scale gene regulatory networks based on fuzzy cognitive maps.
    Liu J; Chi Y; Zhu C; Jin Y
    BMC Bioinformatics; 2017 May; 18(1):241. PubMed ID: 28482795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graph partitioning using annealed neural networks.
    Van den Bout DE; Miller TK
    IEEE Trans Neural Netw; 1990; 1(2):192-203. PubMed ID: 18282836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A modified two-stage Markov clustering algorithm for large and sparse networks.
    Szilágyi L; Szilágyi SM
    Comput Methods Programs Biomed; 2016 Oct; 135():15-26. PubMed ID: 27586476
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tractable Learning and Inference for Large-Scale Probabilistic Boolean Networks.
    Apostolopoulou I; Marculescu D
    IEEE Trans Neural Netw Learn Syst; 2019 Sep; 30(9):2720-2734. PubMed ID: 30629517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.