These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34005997)

  • 1. Time-dependent inertia of self-propelled particles: The Langevin rocket.
    Sprenger AR; Jahanshahi S; Ivlev AV; Löwen H
    Phys Rev E; 2021 Apr; 103(4-1):042601. PubMed ID: 34005997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active Ornstein-Uhlenbeck model for self-propelled particles with inertia.
    Nguyen GHP; Wittmann R; Löwen H
    J Phys Condens Matter; 2021 Nov; 34(3):. PubMed ID: 34598179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inertial effects of self-propelled particles: From active Brownian to active Langevin motion.
    Löwen H
    J Chem Phys; 2020 Jan; 152(4):040901. PubMed ID: 32007042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active Brownian particle in homogeneous media of different viscosities: numerical simulations.
    Lisin EA; Vaulina OS; Lisina II; Petrov OF
    Phys Chem Chem Phys; 2021 Aug; 23(30):16248-16257. PubMed ID: 34308937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion of a self-propelled particle with rotational inertia.
    Lisin EA; Vaulina OS; Lisina II; Petrov OF
    Phys Chem Chem Phys; 2022 Jun; 24(23):14150-14158. PubMed ID: 35648110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active Brownian motion with memory delay induced by a viscoelastic medium.
    Sprenger AR; Bair C; Löwen H
    Phys Rev E; 2022 Apr; 105(4-1):044610. PubMed ID: 35590653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial dynamics of an active Brownian particle.
    Mayer Martins J; Wittkowski R
    Phys Rev E; 2022 Sep; 106(3-1):034616. PubMed ID: 36266913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inertial delay of self-propelled particles.
    Scholz C; Jahanshahi S; Ldov A; Löwen H
    Nat Commun; 2018 Dec; 9(1):5156. PubMed ID: 30514839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of active particles with translational and rotational inertia.
    Sprenger AR; Caprini L; Löwen H; Wittmann R
    J Phys Condens Matter; 2023 Apr; 35(30):. PubMed ID: 37059111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous diffusion of active Brownian particles cross-linked to a networked polymer: Langevin dynamics simulation and theory.
    Joo S; Durang X; Lee OC; Jeon JH
    Soft Matter; 2020 Oct; 16(40):9188-9201. PubMed ID: 32840541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Gaussian statistics for the motion of self-propelled Janus particles: experiment versus theory.
    Zheng X; Ten Hagen B; Kaiser A; Wu M; Cui H; Silber-Li Z; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032304. PubMed ID: 24125265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonequilibrium diffusion of active particles bound to a semiflexible polymer network: Simulations and fractional Langevin equation.
    Han HT; Joo S; Sakaue T; Jeon JH
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37428046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active particles in noninertial frames: How to self-propel on a carousel.
    Löwen H
    Phys Rev E; 2019 Jun; 99(6-1):062608. PubMed ID: 31330628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collective motion of binary self-propelled particle mixtures.
    Menzel AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021912. PubMed ID: 22463249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inertial self-propelled particles.
    Caprini L; Marini Bettolo Marconi U
    J Chem Phys; 2021 Jan; 154(2):024902. PubMed ID: 33445896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-aligning active agents with inertia and active torque.
    Fersula J; Bredeche N; Dauchot O
    Phys Rev E; 2024 Jul; 110(1-1):014606. PubMed ID: 39161031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-consistent generalized Langevin-equation theory for liquids of nonspherically interacting particles.
    Elizondo-Aguilera LF; Zubieta Rico PF; Ruiz-Estrada H; Alarcón-Waess O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052301. PubMed ID: 25493790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluctuating chemohydrodynamics and the stochastic motion of self-diffusiophoretic particles.
    Gaspard P; Kapral R
    J Chem Phys; 2018 Apr; 148(13):134104. PubMed ID: 29626853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity-crowding coupling effect on the diffusion dynamics of a self-propelled particle in polymer solutions.
    Yuan C; Chen A; Zhang B; Zhao N
    Phys Chem Chem Phys; 2019 Nov; 21(43):24112-24125. PubMed ID: 31657399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data-driven discovery of stochastic dynamical equations of collective motion.
    Nabeel A; Jadhav V; M DR; Sire C; Theraulaz G; Escobedo R; Iyer SK; Guttal V
    Phys Biol; 2023 Jul; 20(5):. PubMed ID: 37369222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.