These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34006063)

  • 1. Digitally programmed (CAD) offset values for prototyped occlusal splints (CAM): assessment of appliance-fitting using surface-based superimposition and deviation analysis.
    Lo Giudice A; Ronsivalle V; Pedullà E; Rugeri M; Leonardi R
    Int J Comput Dent; 2021 Feb; 24(1):53-63. PubMed ID: 34006063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precision of 3D-printed splints with different dental model offsets.
    Ye N; Wu T; Dong T; Yuan L; Fang B; Xia L
    Am J Orthod Dentofacial Orthop; 2019 May; 155(5):733-738. PubMed ID: 31053289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel CAD/CAM composite occlusal splint for intraoperative verification in single-splint two-jaw orthognathic surgery.
    Lo LJ; Niu LS; Liao CH; Lin HH
    Biomed J; 2021 Jun; 44(3):353-362. PubMed ID: 34144940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of offset on the precision of 3D-printed orthognathic surgical splints.
    Wang P; Wang Y; Xu H; Huang Y; Shi Y; Chen S; Bai D; Xue C
    Clin Oral Investig; 2023 Sep; 27(9):5141-5151. PubMed ID: 37415046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Analysis between Conventional Acrylic, CAD/CAM Milled, and 3D CAD/CAM Printed Occlusal Splints.
    Abad-Coronel C; Ruano Espinosa C; Ordóñez Palacios S; Paltán CA; Fajardo JI
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully digital workflow for the fabrication of occlusal stabilization splints based on individual mandibular movement.
    Sun X; Feng Y; Jiao Y; Liu W
    J Dent; 2024 Feb; 141():104826. PubMed ID: 38157975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional printed final occlusal splint for orthognathic surgery: design and validation.
    Shaheen E; Sun Y; Jacobs R; Politis C
    Int J Oral Maxillofac Surg; 2017 Jan; 46(1):67-71. PubMed ID: 27815012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermo-flexible resin for the 3D printing of occlusal splints: A randomized pilot trial.
    Herpel C; Kykal J; Rues S; Schwindling FS; Rammelsberg P; Eberhard L
    J Dent; 2023 Jun; 133():104514. PubMed ID: 37031885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Construction and preliminary clinical evaluation of digital stabilization occlusal splint system].
    Lin R; Yu CH; Sun J
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2020 Dec; 55(12):983-986. PubMed ID: 33280364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of hardness and polishability of various occlusal splint materials.
    Grymak A; Aarts JM; Ma S; Waddell JN; Choi JJE
    J Mech Behav Biomed Mater; 2021 Mar; 115():104270. PubMed ID: 33341739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of CAD/CAM-fabricated bite splints: milling vs 3D printing.
    Marcel R; Reinhard H; Andreas K
    Clin Oral Investig; 2020 Dec; 24(12):4607-4615. PubMed ID: 32436163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical and chemical characterization of contemporary occlusal splint materials fabricated with different methods: a systematic review.
    Benli M; Al-Haj Husain N; Ozcan M
    Clin Oral Investig; 2023 Dec; 27(12):7115-7141. PubMed ID: 37910242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preliminary clinical evaluation of traditional and a new digital PEEK occlusal splints for the management of sleep bruxism.
    Wang S; Li Z; Ye H; Zhao W; Liu Y; Zhou Y
    J Oral Rehabil; 2020 Dec; 47(12):1530-1537. PubMed ID: 32841412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-body wear and surface hardness of occlusal splint materials.
    Gibreel M; Perea-Lowery L; Vallittu PK; Garoushi S; Lassila L
    Dent Mater J; 2022 Nov; 41(6):916-922. PubMed ID: 36288940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of wear behaviour of various occlusal splint materials and manufacturing processes.
    Grymak A; Waddell JN; Aarts JM; Ma S; Choi JJE
    J Mech Behav Biomed Mater; 2022 Feb; 126():105053. PubMed ID: 34998068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital Michigan splint - from intraoral scanning to plasterless manufacturing.
    Dedem P; Türp JC
    Int J Comput Dent; 2016; 19(1):63-76. PubMed ID: 27027103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wear Behavior of Occlusal Splint Materials Manufactured By Various Methods: A Systematic Review.
    Grymak A; Aarts JM; Ma S; Waddell JN; Choi JJE
    J Prosthodont; 2022 Jul; 31(6):472-487. PubMed ID: 34516696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing an occlusal appliance digital protocol using an open-source 3D modeling software program: a technical report.
    Buzayan MM; Yeoh OT; Alsadaie K; Sivakumar I
    Int J Comput Dent; 2024 Jun; 27(2):199-205. PubMed ID: 37350408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison between Additive and Subtractive CAD-CAM Technique to Produce Orthognathic Surgical Splints: A Personalized Approach.
    Palazzo G; Ronsivalle V; Oteri G; Lo Giudice A; Toro C; Campagna P; Patini R; Bocchieri S; Bianchi A; Isola G
    J Pers Med; 2020 Dec; 10(4):. PubMed ID: 33322616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital assessment of occlusal wear patterns on occlusal stabilization splints: a pilot study.
    Korioth TW; Bohlig KG; Anderson GC
    J Prosthet Dent; 1998 Aug; 80(2):209-13. PubMed ID: 9710824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.