These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34006096)

  • 1. Breaking the Coupled Cluster Barrier for Machine-Learned Potentials of Large Molecules: The Case of 15-Atom Acetylacetone.
    Qu C; Houston PL; Conte R; Nandi A; Bowman JM
    J Phys Chem Lett; 2021 May; 12(20):4902-4909. PubMed ID: 34006096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full-dimensional potential energy surface for acetylacetone and tunneling splittings.
    Qu C; Conte R; Houston PL; Bowman JM
    Phys Chem Chem Phys; 2021 Apr; 23(13):7758-7767. PubMed ID: 32969434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Δ-machine learning for potential energy surfaces: A PIP approach to bring a DFT-based PES to CCSD(T) level of theory.
    Nandi A; Qu C; Houston PL; Conte R; Bowman JM
    J Chem Phys; 2021 Feb; 154(5):051102. PubMed ID: 33557535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer Learning for Affordable and High-Quality Tunneling Splittings from Instanton Calculations.
    Käser S; Richardson JO; Meuwly M
    J Chem Theory Comput; 2022 Nov; 18(11):6840-6850. PubMed ID: 36279109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmark theoretical study of the π-π binding energy in the benzene dimer.
    Miliordos E; Aprà E; Xantheas SS
    J Phys Chem A; 2014 Sep; 118(35):7568-78. PubMed ID: 24761749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal geometries and harmonic vibrational frequencies of the global minima of water clusters (H2O)n, n = 2-6, and several hexamer local minima at the CCSD(T) level of theory.
    Miliordos E; Aprà E; Xantheas SS
    J Chem Phys; 2013 Sep; 139(11):114302. PubMed ID: 24070285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NENCI-2021. I. A large benchmark database of non-equilibrium non-covalent interactions emphasizing close intermolecular contacts.
    Sparrow ZM; Ernst BG; Joo PT; Lao KU; DiStasio RA
    J Chem Phys; 2021 Nov; 155(18):184303. PubMed ID: 34773949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio benchmark study for the oxidative addition of CH4 to Pd: importance of basis-set flexibility and polarization.
    de Jong GT; Solà M; Visscher L; Bickelhaupt FM
    J Chem Phys; 2004 Nov; 121(20):9982-92. PubMed ID: 15549873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory.
    Bozkaya U
    J Chem Phys; 2013 Sep; 139(10):104116. PubMed ID: 24050337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enabling Rapid and Accurate Construction of CCSD(T)-Level Potential Energy Surface of Large Molecules Using Molecular Tailoring Approach.
    Khire SS; Gurav ND; Nandi A; Gadre SR
    J Phys Chem A; 2022 Mar; 126(8):1458-1464. PubMed ID: 35170973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate interaction energies by spin component scaled Möller-Plesset second order perturbation theory calculations with optimized basis sets (SCS-MP2
    Cacelli I; Lipparini F; Greff da Silveira L; Jacobs M; Livotto PR; Prampolini G
    J Chem Phys; 2019 Jun; 150(23):234113. PubMed ID: 31228912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and binding energy of the H
    Lemke KH
    J Chem Phys; 2017 Jun; 146(23):234301. PubMed ID: 28641437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Heterogeneity in Small π-Type Dimers: Homogeneous and Mixed Dimers of Diacetylene and Cyanogen.
    Copeland KL; Tschumper GS
    J Chem Theory Comput; 2012 Nov; 8(11):4279-84. PubMed ID: 26605591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab Initio Calculations for Molecule-Surface Interactions with Chemical Accuracy.
    Sauer J
    Acc Chem Res; 2019 Dec; 52(12):3502-3510. PubMed ID: 31765121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost.
    Schwabe T; Grimme S
    Acc Chem Res; 2008 Apr; 41(4):569-79. PubMed ID: 18324790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ring-Polymer Instanton Tunneling Splittings of Tropolone and Isotopomers using a Δ-Machine Learned CCSD(T) Potential: Theory and Experiment Shake Hands.
    Nandi A; Laude G; Khire SS; Gurav ND; Qu C; Conte R; Yu Q; Li S; Houston PL; Gadre SR; Richardson JO; Evangelista FA; Bowman JM
    J Am Chem Soc; 2023 May; 145(17):9655-9664. PubMed ID: 37078852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heats of Formation of Medium-Sized Organic Compounds from Contemporary Electronic Structure Methods.
    Minenkov Y; Wang H; Wang Z; Sarathy SM; Cavallo L
    J Chem Theory Comput; 2017 Aug; 13(8):3537-3560. PubMed ID: 28636351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isomers of the uracil dimer: an ab initio benchmark study.
    Frey JA; Müller A; Losada M; Leutwyler S
    J Phys Chem B; 2007 Apr; 111(13):3534-42. PubMed ID: 17388514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orbital-optimized MP2.5 and its analytic gradients: approaching CCSD(T) quality for noncovalent interactions.
    Bozkaya U; Sherrill CD
    J Chem Phys; 2014 Nov; 141(20):204105. PubMed ID: 25429931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.