These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34006102)

  • 1. Achieving a Higher Energy Charge-Transfer State and Reduced Voltage Loss for Organic Solar Cells using Nonfullerene Acceptors with Norbornenyl-Functionalized Terminal Groups.
    Liu W; Lu H; Xu X; Huang H; Zhang J; Tang Z; Bo Z
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24765-24773. PubMed ID: 34006102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unveiling Excitonic Dynamics in High-Efficiency Nonfullerene Organic Solar Cells to Direct Morphological Optimization for Suppressing Charge Recombination.
    Liu X; Yan Y; Honarfar A; Yao Y; Zheng K; Liang Z
    Adv Sci (Weinh); 2019 Apr; 6(8):1802103. PubMed ID: 31016115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Insight into Efficient Charge Generation in Low-Driving-Force Nonfullerene Organic Solar Cells.
    Han G; Yi Y
    Acc Chem Res; 2022 Mar; 55(6):869-877. PubMed ID: 35230078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive and Comparative Analysis of Photoinduced Charge Generation, Recombination Kinetics, and Energy Losses in Fullerene and Nonfullerene Acceptor-Based Organic Solar Cells.
    Sharma R; Jain N; Lee H; Kabra D; Yoo S
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45083-45091. PubMed ID: 32900181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlorinated Narrow Bandgap Polymer Suppresses Non-Radiative Recombination Energy Loss Enabling Perylene Diimides-Based Organic Solar Cells Exceeding 10% Efficiency.
    Gao X; Tong X; Xu M; Zhang L; Wang Y; Liu Z; Yang L; Gao J; Shao M; Liu Z
    Small; 2023 Jul; 19(29):e2208217. PubMed ID: 37013462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PBDB-T-Based Binary-OSCs Achieving over 15.83% Efficiency via End-Group Functionalization and Alkyl-Chain Engineering of Quinoxaline-Containing Non-Fullerene Acceptors.
    Busireddy MR; Chen TW; Huang SC; Su YJ; Wang YM; Chuang WT; Chen JT; Hsu CS
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):41264-41274. PubMed ID: 36041037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Junction Binary-Blend Nonfullerene Polymer Solar Cells with 12.1% Efficiency.
    Zhao F; Dai S; Wu Y; Zhang Q; Wang J; Jiang L; Ling Q; Wei Z; Ma W; You W; Wang C; Zhan X
    Adv Mater; 2017 May; 29(18):. PubMed ID: 28295734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isomerically Pure Benzothiophene-Incorporated Acceptor: Achieving Improved
    Chang SL; Hung KE; Cao FY; Huang KH; Hsu CS; Liao CY; Lee CH; Cheng YJ
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33179-33187. PubMed ID: 31416309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial and Bulk Nanostructures Control Loss of Charges in Organic Solar Cells.
    Naveed HB; Zhou K; Ma W
    Acc Chem Res; 2019 Oct; 52(10):2904-2915. PubMed ID: 31577121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Over 15% Efficiency in Ternary Organic Solar Cells by Enhanced Charge Transport and Reduced Energy Loss.
    Wang H; Zhang Z; Yu J; Lin PC; Chueh CC; Liu X; Guang S; Qu S; Tang W
    ACS Appl Mater Interfaces; 2020 May; 12(19):21633-21640. PubMed ID: 32314906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. π-Extended Nonfullerene Acceptors for Efficient Organic Solar Cells with a High Open-Circuit Voltage of 0.94 V and a Low Energy Loss of 0.49 eV.
    Pan J; Shi Y; Yu J; Zhang H; Liu Y; Zhang J; Gao F; Yu X; Lu K; Wei Z
    ACS Appl Mater Interfaces; 2021 May; 13(19):22531-22539. PubMed ID: 33955726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quinoxaline-Based Wide Band Gap Polymers for Efficient Nonfullerene Organic Solar Cells with Large Open-Circuit Voltages.
    Yang J; Uddin MA; Tang Y; Wang Y; Wang Y; Su H; Gao R; Chen ZK; Dai J; Woo HY; Guo X
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23235-23246. PubMed ID: 29911382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Halogenated End Groups on the Performance of Nonfullerene Acceptors.
    Mo D; Chen H; Zhu Y; Huang HH; Chao P; He F
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6147-6155. PubMed ID: 33502161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heptacyclic S,N-Heteroacene-Based Near-Infrared Nonfullerene Acceptor Enables High-Performance Organic Solar Cells with Small Highest Occupied Molecular Orbital Offsets.
    Ma S; Wu S; Zhang J; Song Y; Tang H; Zhang K; Huang F; Cao Y
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51776-51784. PubMed ID: 33156597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding of the Nearly Linear Tunable Open-Circuit Voltages in Ternary Organic Solar Cells Based on Two Non-fullerene Acceptors.
    Jia Z; Chen Z; Chen X; Bai L; Zhu H; Yang YM
    J Phys Chem Lett; 2021 Jan; 12(1):151-156. PubMed ID: 33320004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Ternary Organic Solar Cells with a New Electron Acceptor Based on 3,4-(2,2-Dihexylpropylenedioxy)thiophene.
    Zhang C; Jiang P; Zhou X; Feng S; Bi Z; Xu X; Li C; Tang Z; Ma W; Bo Z
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40590-40598. PubMed ID: 32805919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonfullerene Acceptor with "Donor-Acceptor Combined π-Bridge" for Organic Photovoltaics with Large Open-Circuit Voltage.
    Yang Y; Wang J; Xu H; Zhan X; Chen X
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):18984-18992. PubMed ID: 29761703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achieving 19% Power Conversion Efficiency in Planar-Mixed Heterojunction Organic Solar Cells Using a Pseudosymmetric Electron Acceptor.
    Gao W; Qi F; Peng Z; Lin FR; Jiang K; Zhong C; Kaminsky W; Guan Z; Lee CS; Marks TJ; Ade H; Jen AK
    Adv Mater; 2022 Aug; 34(32):e2202089. PubMed ID: 35724397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution-Processed Organic Solar Cells with High Open-Circuit Voltage of 1.3 V and Low Non-Radiative Voltage Loss of 0.16 V.
    An N; Cai Y; Wu H; Tang A; Zhang K; Hao X; Ma Z; Guo Q; Ryu HS; Woo HY; Sun Y; Zhou E
    Adv Mater; 2020 Oct; 32(39):e2002122. PubMed ID: 32844465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating Structure Ordering via Side-Chain Engineering of Thieno[3,4-
    Liu F; Zhang J; Wang Y; Chen S; Zhou Z; Yang C; Gao F; Zhu X
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35193-35200. PubMed ID: 31405275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.