These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34006864)

  • 1. Reconciling metal-silicate partitioning and late accretion in the Earth.
    Suer TA; Siebert J; Remusat L; Day JMD; Borensztajn S; Doisneau B; Fiquet G
    Nat Commun; 2021 May; 12(1):2913. PubMed ID: 34006864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly siderophile elements were stripped from Earth's mantle by iron sulfide segregation.
    Rubie DC; Laurenz V; Jacobson SA; Morbidelli A; Palme H; Vogel AK; Frost DJ
    Science; 2016 Sep; 353(6304):1141-4. PubMed ID: 27609889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accretion and core formation: constraints from metal-silicate partitioning.
    Wood BJ
    Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1883):4339-55. PubMed ID: 18826926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a late chondritic veneer in the Earth's mantle from high-pressure partitioning of palladium and platinum.
    Holzheid A; Sylvester P; O'Neill HS; Rubie DC; Palme HS
    Nature; 2000 Jul; 406(6794):396-9. PubMed ID: 10935633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly siderophile element depletion in the Moon.
    Day JMD; Walker RJ
    Earth Planet Sci Lett; 2015 Aug; 423():114-124. PubMed ID: 34465923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partitioning experiments in the laser-heated diamond anvil cell: volatile content in the Earth's core.
    Jephcoat AP; Bouhifd MA; Porcelli D
    Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1883):4295-314. PubMed ID: 18852112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-silicate Partitioning at High Pressure and Temperature: Experimental Methods and a Protocol to Suppress Highly Siderophile Element Inclusions.
    Bennett NR; Brenan JM; Fei Y
    J Vis Exp; 2015 Jun; (100):e52725. PubMed ID: 26132380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly siderophile element constraints on accretion and differentiation of the Earth-Moon system.
    Day JM; Pearson DG; Taylor LA
    Science; 2007 Jan; 315(5809):217-9. PubMed ID: 17218521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The carbon content of Earth and its core.
    Fischer RA; Cottrell E; Hauri E; Lee KKM; Le Voyer M
    Proc Natl Acad Sci U S A; 2020 Apr; 117(16):8743-8749. PubMed ID: 32229562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Terrestrial accretion under oxidizing conditions.
    Siebert J; Badro J; Antonangeli D; Ryerson FJ
    Science; 2013 Mar; 339(6124):1194-7. PubMed ID: 23306436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-chondritic sulphur isotope composition of the terrestrial mantle.
    Labidi J; Cartigny P; Moreira M
    Nature; 2013 Sep; 501(7466):208-11. PubMed ID: 24005324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The redox state of the mantle during and just after core formation.
    Frost DJ; Mann U; Asahara Y; Rubie DC
    Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1883):4315-37. PubMed ID: 18826924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer.
    Wang Z; Becker H
    Nature; 2013 Jul; 499(7458):328-31. PubMed ID: 23868263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The niobium and tantalum concentration in the mantle constrains the composition of Earth's primordial magma ocean.
    Huang D; Badro J; Siebert J
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27893-27898. PubMed ID: 33106398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Late accretion on the earliest planetesimals revealed by the highly siderophile elements.
    Dale CW; Burton KW; Greenwood RC; Gannoun A; Wade J; Wood BJ; Pearson DG
    Science; 2012 Apr; 336(6077):72-5. PubMed ID: 22491852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core formation during early accretion of the Earth.
    Newsom HE; Sims KW
    Science; 1991 May; 252(5008):926-33. PubMed ID: 17843226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-chondritic distribution of the highly siderophile elements in mantle sulphides.
    Alard O; Griffin WL; Lorand JP; Jackson SE; O'Reilly SY
    Nature; 2000 Oct; 407(6806):891-4. PubMed ID: 11057664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An early geodynamo driven by exsolution of mantle components from Earth's core.
    Badro J; Siebert J; Nimmo F
    Nature; 2016 Aug; 536(7616):326-8. PubMed ID: 27437583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ni isotopes provide a glimpse of Earth's pre-late-veneer mantle.
    Xu Y; Szilas K; Zhang L; Zhu JM; Wu G; Zhang J; Qin B; Sun Y; Pearson DG; Liu J
    Sci Adv; 2023 Dec; 9(50):eadj2170. PubMed ID: 38100586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ruthenium isotopic composition of the oceanic mantle.
    Bermingham KR; Walker RJ
    Earth Planet Sci Lett; 2017 Sep; 474():466-473. PubMed ID: 30956285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.