These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34006893)

  • 21. Quantification of Radiomics features of Peritumoral Vasogenic Edema extracted from fluid-attenuated inversion recovery images in glioblastoma and isolated brain metastasis, using T1-dynamic contrast-enhanced Perfusion analysis.
    Parvaze PS; Bhattacharjee R; Verma YK; Singh RK; Yadav V; Singh A; Khanna G; Ahlawat S; Trivedi R; Patir R; Vaishya S; Shah TJ; Gupta RK
    NMR Biomed; 2023 May; 36(5):e4884. PubMed ID: 36453877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine-learning based radiogenomics analysis of MRI features and metagenes in glioblastoma multiforme patients with different survival time.
    Liao X; Cai B; Tian B; Luo Y; Song W; Li Y
    J Cell Mol Med; 2019 Jun; 23(6):4375-4385. PubMed ID: 31001929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma.
    Kim M; Jung SY; Park JE; Jo Y; Park SY; Nam SJ; Kim JH; Kim HS
    Eur Radiol; 2020 Apr; 30(4):2142-2151. PubMed ID: 31828414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI.
    Kim Y; Cho HH; Kim ST; Park H; Nam D; Kong DS
    Neuroradiology; 2018 Dec; 60(12):1297-1305. PubMed ID: 30232517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Presurgical MRI-Based Radiomics Models for Predicting Cerebellar Mutism Syndrome in Children With Posterior Fossa Tumors.
    Yang W; Yang P; Li Y; Chen J; Chen J; Cai Y; Zhu K; Zhang H; Li Y; Peng Y; Ge M
    J Magn Reson Imaging; 2023 Dec; 58(6):1966-1976. PubMed ID: 37009777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noninvasive O
    Hajianfar G; Shiri I; Maleki H; Oveisi N; Haghparast A; Abdollahi H; Oveisi M
    World Neurosurg; 2019 Dec; 132():e140-e161. PubMed ID: 31505292
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differentiation Between Glioblastoma and Metastatic Disease on Conventional MRI Imaging Using 3D-Convolutional Neural Networks: Model Development and Validation.
    Bathla G; Dhruba DD; Liu Y; Le NH; Soni N; Zhang H; Mohan S; Roberts-Wolfe D; Rathore S; Sonka M; Priya S; Agarwal A
    Acad Radiol; 2024 May; 31(5):2041-2049. PubMed ID: 37977889
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients.
    Kim JY; Park JE; Jo Y; Shim WH; Nam SJ; Kim JH; Yoo RE; Choi SH; Kim HS
    Neuro Oncol; 2019 Feb; 21(3):404-414. PubMed ID: 30107606
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A radiomics nomogram based on multiparametric MRI might stratify glioblastoma patients according to survival.
    Zhang X; Lu H; Tian Q; Feng N; Yin L; Xu X; Du P; Liu Y
    Eur Radiol; 2019 Oct; 29(10):5528-5538. PubMed ID: 30847586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diffusion and perfusion MRI radiomics obtained from deep learning segmentation provides reproducible and comparable diagnostic model to human in post-treatment glioblastoma.
    Park JE; Ham S; Kim HS; Park SY; Yun J; Lee H; Choi SH; Kim N
    Eur Radiol; 2021 May; 31(5):3127-3137. PubMed ID: 33128598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine learning-based radiomic, clinical and semantic feature analysis for predicting overall survival and MGMT promoter methylation status in patients with glioblastoma.
    Lu Y; Patel M; Natarajan K; Ughratdar I; Sanghera P; Jena R; Watts C; Sawlani V
    Magn Reson Imaging; 2020 Dec; 74():161-170. PubMed ID: 32980505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differentiation of Pilocytic Astrocytoma from Glioblastoma using a Machine-Learning framework based upon quantitative T1 perfusion MRI.
    Vats N; Sengupta A; Gupta RK; Patir R; Vaishya S; Ahlawat S; Saini J; Agarwal S; Singh A
    Magn Reson Imaging; 2023 May; 98():76-82. PubMed ID: 36572323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiparametric imaging-based differentiation of lymphoma and glioblastoma: using T1-perfusion, diffusion, and susceptibility-weighted MRI.
    Saini J; Kumar Gupta P; Awasthi A; Pandey CM; Singh A; Patir R; Ahlawat S; Sadashiva N; Mahadevan A; Kumar Gupta R
    Clin Radiol; 2018 Nov; 73(11):986.e7-986.e15. PubMed ID: 30197047
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differentiation of recurrent glioblastoma from radiation necrosis using diffusion radiomics with machine learning model development and external validation.
    Park YW; Choi D; Park JE; Ahn SS; Kim H; Chang JH; Kim SH; Kim HS; Lee SK
    Sci Rep; 2021 Feb; 11(1):2913. PubMed ID: 33536499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fully automated radiomics-based machine learning models for multiclass classification of single brain tumors: Glioblastoma, lymphoma, and metastasis.
    Joo B; Ahn SS; An C; Han K; Choi D; Kim H; Park JE; Kim HS; Lee SK
    J Neuroradiol; 2023 Jun; 50(4):388-395. PubMed ID: 36370829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep Learning With an Attention Mechanism for Differentiating the Origin of Brain Metastasis Using MR images.
    Jiao T; Li F; Cui Y; Wang X; Li B; Shi F; Xia Y; Zhou Q; Zeng Q
    J Magn Reson Imaging; 2023 Nov; 58(5):1624-1635. PubMed ID: 36965182
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ensemble learning-based radiomics with multi-sequence magnetic resonance imaging for benign and malignant soft tissue tumor differentiation.
    Lee S; Lee SY; Jung JY; Nam Y; Jeon HJ; Jung CK; Shin SH; Chung YG
    PLoS One; 2023; 18(5):e0286417. PubMed ID: 37256875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and Validation of a MRI-Based Radiomics Prognostic Classifier in Patients with Primary Glioblastoma Multiforme.
    Chen X; Fang M; Dong D; Liu L; Xu X; Wei X; Jiang X; Qin L; Liu Z
    Acad Radiol; 2019 Oct; 26(10):1292-1300. PubMed ID: 30660472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combining multiparametric MRI features-based transfer learning and clinical parameters: application of machine learning for the differentiation of uterine sarcomas from atypical leiomyomas.
    Dai M; Liu Y; Hu Y; Li G; Zhang J; Xiao Z; Lv F
    Eur Radiol; 2022 Nov; 32(11):7988-7997. PubMed ID: 35583712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine learning-based radiomic evaluation of treatment response prediction in glioblastoma.
    Patel M; Zhan J; Natarajan K; Flintham R; Davies N; Sanghera P; Grist J; Duddalwar V; Peet A; Sawlani V
    Clin Radiol; 2021 Aug; 76(8):628.e17-628.e27. PubMed ID: 33941364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.