These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34008019)

  • 1. Evaluation of Automated Multiclass Fluid Segmentation in Optical Coherence Tomography Images Using the Pegasus Fluid Segmentation Algorithms.
    Terry L; Trikha S; Bhatia KK; Graham MS; Wood A
    Transl Vis Sci Technol; 2021 Jan; 10(1):27. PubMed ID: 34008019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of an Artificial Intelligence-Based Detector of Sub- and Intraretinal Fluid on a Large Set of Optical Coherence Tomography Volumes in Age-Related Macular Degeneration and Diabetic Macular Edema.
    Habra O; Gallardo M; Meyer Zu Westram T; De Zanet S; Jaggi D; Zinkernagel M; Wolf S; Sznitman R
    Ophthalmologica; 2022; 245(6):516-527. PubMed ID: 36215958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Segmentation of Lesions Including Subretinal Hyperreflective Material in Neovascular Age-related Macular Degeneration.
    Lee H; Kang KE; Chung H; Kim HC
    Am J Ophthalmol; 2018 Jul; 191():64-75. PubMed ID: 29655643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial Correspondence Between Intraretinal Fluid, Subretinal Fluid, and Pigment Epithelial Detachment in Neovascular Age-Related Macular Degeneration.
    Klimscha S; Waldstein SM; Schlegl T; Bogunovic H; Sadeghipour A; Philip AM; Podkowinski D; Pablik E; Zhang L; Abramoff MD; Sonka M; Gerendas BS; Schmidt-Erfurth U
    Invest Ophthalmol Vis Sci; 2017 Aug; 58(10):4039-4048. PubMed ID: 28813577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of Fluid Resolution and Visual Acuity Gain in Patients With Diabetic Macular Edema Using Deep Learning: A Post Hoc Analysis of a Randomized Clinical Trial.
    Roberts PK; Vogl WD; Gerendas BS; Glassman AR; Bogunovic H; Jampol LM; Schmidt-Erfurth UM
    JAMA Ophthalmol; 2020 Sep; 138(9):945-953. PubMed ID: 32722799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning.
    Schlegl T; Waldstein SM; Bogunovic H; Endstraßer F; Sadeghipour A; Philip AM; Podkowinski D; Gerendas BS; Langs G; Schmidt-Erfurth U
    Ophthalmology; 2018 Apr; 125(4):549-558. PubMed ID: 29224926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RetFluidNet: Retinal Fluid Segmentation for SD-OCT Images Using Convolutional Neural Network.
    Sappa LB; Okuwobi IP; Li M; Zhang Y; Xie S; Yuan S; Chen Q
    J Digit Imaging; 2021 Jun; 34(3):691-704. PubMed ID: 34080105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning.
    Wilson M; Chopra R; Wilson MZ; Cooper C; MacWilliams P; Liu Y; Wulczyn E; Florea D; Hughes CO; Karthikesalingam A; Khalid H; Vermeirsch S; Nicholson L; Keane PA; Balaskas K; Kelly CJ
    JAMA Ophthalmol; 2021 Sep; 139(9):964-973. PubMed ID: 34236406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated Quantification of Pathological Fluids in Neovascular Age-Related Macular Degeneration, and Its Repeatability Using Deep Learning.
    Mantel I; Mosinska A; Bergin C; Polito MS; Guidotti J; Apostolopoulos S; Ciller C; De Zanet S
    Transl Vis Sci Technol; 2021 Apr; 10(4):17. PubMed ID: 34003996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systematic evaluation of human expert agreement on optical coherence tomography biomarkers using multiple devices.
    Michl M; Neschi M; Kaider A; Hatz K; Deak G; Gerendas BS; Schmidt-Erfurth U
    Eye (Lond); 2023 Aug; 37(12):2573-2579. PubMed ID: 36577804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning based joint segmentation and characterization of multi-class retinal fluid lesions on OCT scans for clinical use in anti-VEGF therapy.
    Hassan B; Qin S; Ahmed R; Hassan T; Taguri AH; Hashmi S; Werghi N
    Comput Biol Med; 2021 Sep; 136():104727. PubMed ID: 34385089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning.
    Moraes G; Fu DJ; Wilson M; Khalid H; Wagner SK; Korot E; Ferraz D; Faes L; Kelly CJ; Spitz T; Patel PJ; Balaskas K; Keenan TDL; Keane PA; Chopra R
    Ophthalmology; 2021 May; 128(5):693-705. PubMed ID: 32980396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic segmentation of multitype retinal fluid from optical coherence tomography images using semisupervised deep learning network.
    Li F; Pan W; Xiang W; Zou H
    Br J Ophthalmol; 2023 Sep; 107(9):1350-1355. PubMed ID: 35697498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-learning based automated quantification of critical optical coherence tomography features in neovascular age-related macular degeneration.
    Borrelli E; Oakley JD; Iaccarino G; Russakoff DB; Battista M; Grosso D; Borghesan F; Barresi C; Sacconi R; Bandello F; Querques G
    Eye (Lond); 2024 Feb; 38(3):537-544. PubMed ID: 37670143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully Automated Segmentation of Fluid/Cyst Regions in Optical Coherence Tomography Images With Diabetic Macular Edema Using Neutrosophic Sets and Graph Algorithms.
    Rashno A; Koozekanani DD; Drayna PM; Nazari B; Sadri S; Rabbani H; Parhi KK
    IEEE Trans Biomed Eng; 2018 May; 65(5):989-1001. PubMed ID: 28783619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OCT Fluid Segmentation using Graph Shortest Path and Convolutional Neural Network
    Rashno A; Koozekanani DD; Parhi KK
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3426-3429. PubMed ID: 30441124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple estimation of clinically relevant lesion volumes using spectral domain-optical coherence tomography in neovascular age-related macular degeneration.
    Heussen FM; Ouyang Y; Sadda SR; Walsh AC
    Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7792-8. PubMed ID: 21862646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EFFECT OF RANIBIZUMAB AND AFLIBERCEPT ON RETINAL PIGMENT EPITHELIAL DETACHEMENT, SUBRETINAL AND INTRARETINAL FLUID IN AGE-RELATED MACULAR DEGENERATION.
    Sumarová P; Ovesná P; Matušková V; Beránek J; Michalec M; Michalcová L; Autrata D; Vysloužilová D; Chrapek O
    Cesk Slov Oftalmol; 2022; 78(4):176-185. PubMed ID: 35922146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Automated Quantification of Fluid Volumes to Anti-VEGF Therapy of Neovascular Age-Related Macular Degeneration.
    Schmidt-Erfurth U; Vogl WD; Jampol LM; Bogunović H
    Ophthalmology; 2020 Sep; 127(9):1211-1219. PubMed ID: 32327254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of optical coherence tomography scanning density on quantitative analyses in neovascular age-related macular degeneration.
    Velaga SB; Nittala MG; Konduru RK; Heussen F; Keane PA; Sadda SR
    Eye (Lond); 2017 Jan; 31(1):53-61. PubMed ID: 27911444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.