These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 34008274)
1. Dynamic metabolic modelling predicts efficient acetogen-gut bacterium cocultures for CO-to-butyrate conversion. Li X; Henson MA J Appl Microbiol; 2021 Dec; 131(6):2899-2917. PubMed ID: 34008274 [TBL] [Abstract][Full Text] [Related]
2. Metabolic modeling of bacterial co-culture systems predicts enhanced carbon monoxide-to-butyrate conversion compared to monoculture systems. Li X; Henson MA Biochem Eng J; 2019 Nov; 151():. PubMed ID: 32863734 [TBL] [Abstract][Full Text] [Related]
3. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. Ueki T; Nevin KP; Woodard TL; Lovley DR mBio; 2014 Oct; 5(5):e01636-14. PubMed ID: 25336453 [TBL] [Abstract][Full Text] [Related]
4. Model-driven approach for the production of butyrate from CO Benito-Vaquerizo S; Nouse N; Schaap PJ; Hugenholtz J; Brul S; López-Contreras AM; Martins Dos Santos VAP; Suarez-Diez M Front Microbiol; 2022; 13():1064013. PubMed ID: 36620068 [TBL] [Abstract][Full Text] [Related]
5. Butyrate production in the acetogen Eubacterium limosum is dependent on the carbon and energy source. Litty D; Müller V Microb Biotechnol; 2021 Nov; 14(6):2686-2692. PubMed ID: 33629808 [TBL] [Abstract][Full Text] [Related]
6. In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation. Chen J; Henson MA Metab Eng; 2016 Nov; 38():389-400. PubMed ID: 27720802 [TBL] [Abstract][Full Text] [Related]
7. Acetate-assisted increase of butyrate production by Eubacterium limosum KIST612 during carbon monoxide fermentation. Park S; Yasin M; Jeong J; Cha M; Kang H; Jang N; Choi IG; Chang IS Bioresour Technol; 2017 Dec; 245(Pt A):560-566. PubMed ID: 28898856 [TBL] [Abstract][Full Text] [Related]
8. Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and microbial communities from dark fermentation bioreactors. Detman A; Mielecki D; Chojnacka A; Salamon A; Błaszczyk MK; Sikora A Microb Cell Fact; 2019 Feb; 18(1):36. PubMed ID: 30760264 [TBL] [Abstract][Full Text] [Related]
9. Absolute Proteome Quantification in the Gas-Fermenting Acetogen Valgepea K; Talbo G; Takemori N; Takemori A; Ludwig C; Mahamkali V; Mueller AP; Tappel R; Köpke M; Simpson SD; Nielsen LK; Marcellin E mSystems; 2022 Apr; 7(2):e0002622. PubMed ID: 35384696 [TBL] [Abstract][Full Text] [Related]
10. H Valgepea K; de Souza Pinto Lemgruber R; Abdalla T; Binos S; Takemori N; Takemori A; Tanaka Y; Tappel R; Köpke M; Simpson SD; Nielsen LK; Marcellin E Biotechnol Biofuels; 2018; 11():55. PubMed ID: 29507607 [TBL] [Abstract][Full Text] [Related]
11. Propionate Production from Carbon Monoxide by Synthetic Cocultures of Acetobacterium wieringae and Propionigenic Bacteria. Moreira JPC; Diender M; Arantes AL; Boeren S; Stams AJM; Alves MM; Alves JI; Sousa DZ Appl Environ Microbiol; 2021 Jun; 87(14):e0283920. PubMed ID: 33990298 [TBL] [Abstract][Full Text] [Related]
12. Recent advances in n-butanol and butyrate production using engineered Clostridium tyrobutyricum. Bao T; Feng J; Jiang W; Fu H; Wang J; Yang ST World J Microbiol Biotechnol; 2020 Aug; 36(9):138. PubMed ID: 32794091 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of dark fermentation microbial communities in the light of lactate and butyrate production. Detman A; Laubitz D; Chojnacka A; Kiela PR; Salamon A; Barberán A; Chen Y; Yang F; Błaszczyk MK; Sikora A Microbiome; 2021 Jul; 9(1):158. PubMed ID: 34261525 [TBL] [Abstract][Full Text] [Related]
14. Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum. Valgepea K; Loi KQ; Behrendorff JB; Lemgruber RSP; Plan M; Hodson MP; Köpke M; Nielsen LK; Marcellin E Metab Eng; 2017 May; 41():202-211. PubMed ID: 28442386 [TBL] [Abstract][Full Text] [Related]
15. Engineering Clostridium ljungdahlii as the gas-fermenting cell factory for the production of biofuels and biochemicals. Zhang L; Zhao R; Jia D; Jiang W; Gu Y Curr Opin Chem Biol; 2020 Dec; 59():54-61. PubMed ID: 32480247 [TBL] [Abstract][Full Text] [Related]
16. Domestication of the novel alcohologenic acetogen Lee J; Lee JW; Chae CG; Kwon SJ; Kim YJ; Lee JH; Lee HS Biotechnol Biofuels; 2019; 12():228. PubMed ID: 31572495 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamic and Kinetic Modeling Directs Pathway Optimization for Isopropanol Production in a Gas-Fermenting Bacterium. Lo J; Wu C; Humphreys JR; Yang B; Jiang Z; Wang X; Maness P; Tsesmetzis N; Xiong W mSystems; 2023 Apr; 8(2):e0127422. PubMed ID: 36971551 [TBL] [Abstract][Full Text] [Related]
18. The complete genome sequence of Eubacterium limosum SA11, a metabolically versatile rumen acetogen. Kelly WJ; Henderson G; Pacheco DM; Li D; Reilly K; Naylor GE; Janssen PH; Attwood GT; Altermann E; Leahy SC Stand Genomic Sci; 2016; 11():26. PubMed ID: 26981167 [TBL] [Abstract][Full Text] [Related]
19. Modeling a co-culture of Benito-Vaquerizo S; Diender M; Parera Olm I; Martins Dos Santos VAP; Schaap PJ; Sousa DZ; Suarez-Diez M Comput Struct Biotechnol J; 2020; 18():3255-3266. PubMed ID: 33240469 [TBL] [Abstract][Full Text] [Related]
20. Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis. Liew F; Henstra AM; Winzer K; Köpke M; Simpson SD; Minton NP mBio; 2016 May; 7(3):. PubMed ID: 27222467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]