These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34008330)

  • 1. Comparison capacity of collagen hydrogel, mix-powder and in situ hydroxyapatite/collagen hydrogelscaffolds with and without mesenchymal stem cells and platelet-rich plasma in regeneration of critical sized bone defect in a rabbit animal model.
    Bakhtiarimoghadam B; Shirian S; Mirzaei E; Sharifi S; Karimi I; Gharati G; Takallu S; Nazari H
    J Biomed Mater Res B Appl Biomater; 2021 Dec; 109(12):2199-2212. PubMed ID: 34008330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison Capacity of Collagen Hydrogel and Collagen/Strontium Bioglass Nanocomposite Scaffolds With and Without mesenchymal Stem Cells in Regeneration of Critical Sized Bone Defect in a Rabbit Animal Model.
    Gharati G; Shirian S; Sharifi S; Mirzaei E; Bakhtirimoghadam B; Karimi I; Nazari H
    Biol Trace Elem Res; 2022 Jul; 200(7):3176-3186. PubMed ID: 34570341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plate-shape carbonated hydroxyapatite/collagen nanocomposite hydrogel via in situ mineralization of hydroxyapatite concurrent with gelation of collagen at pH = 7.4 and 37°C.
    Takallu S; Mirzaei E; Azadi A; Karimizade A; Tavakol S
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1920-1929. PubMed ID: 30467948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(3-hydroxybutyrate)/hydroxyapatite/alginate scaffolds seeded with mesenchymal stem cells enhance the regeneration of critical-sized bone defect.
    Volkov AV; Muraev AA; Zharkova II; Voinova VV; Akoulina EA; Zhuikov VA; Khaydapova DD; Chesnokova DV; Menshikh KA; Dudun AA; Makhina TK; Bonartseva GA; Asfarov TF; Stamboliev IA; Gazhva YV; Ryabova VM; Zlatev LH; Ivanov SY; Shaitan KV; Bonartsev AP
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():110991. PubMed ID: 32994018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo.
    Prosecká E; Rampichová M; Litvinec A; Tonar Z; Králíčková M; Vojtová L; Kochová P; Plencner M; Buzgo M; Míčková A; Jančář J; Amler E
    J Biomed Mater Res A; 2015 Feb; 103(2):671-82. PubMed ID: 24838634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Platelet-rich plasma incorporated electrospun PVA-chitosan-HA nanofibers accelerates osteogenic differentiation and bone reconstruction.
    Abazari MF; Nejati F; Nasiri N; Khazeni ZAS; Nazari B; Enderami SE; Mohajerani H
    Gene; 2019 Dec; 720():144096. PubMed ID: 31476405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The combination of nano-calcium sulfate/platelet rich plasma gel scaffold with BMP2 gene-modified mesenchymal stem cells promotes bone regeneration in rat critical-sized calvarial defects.
    Liu Z; Yuan X; Fernandes G; Dziak R; Ionita CN; Li C; Wang C; Yang S
    Stem Cell Res Ther; 2017 May; 8(1):122. PubMed ID: 28545565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Platelet rich plasma enhances osteoconductive properties of a hydroxyapatite-β-tricalcium phosphate scaffold (Skelite) for late healing of critical size rabbit calvarial defects.
    El Backly RM; Zaky SH; Canciani B; Saad MM; Eweida AM; Brun F; Tromba G; Komlev VS; Mastrogiacomo M; Marei MK; Cancedda R
    J Craniomaxillofac Surg; 2014 Jul; 42(5):e70-9. PubMed ID: 23932544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone marrow mesenchymal stem cells, platelet-rich plasma and nanohydroxyapatite-type I collagen beads were integral parts of biomimetic bone substitutes for bone regeneration.
    Lin BN; Whu SW; Chen CH; Hsu FY; Chen JC; Liu HW; Chen CH; Liou HM
    J Tissue Eng Regen Med; 2013 Nov; 7(11):841-54. PubMed ID: 22744907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstructing Critical-Sized Mandibular Defects in a Rabbit Model: Enhancing Angiogenesis and Facilitating Bone Regeneration via a Cell-Loaded 3D-Printed Hydrogel-Ceramic Scaffold Application.
    Sajad Daneshi S; Tayebi L; Talaei-Khozani T; Tavanafar S; Hadaegh AH; Rasoulianboroujeni M; Rastegari B; Asadi-Yousefabad SL; Nammian P; Zare S; Mussin NM; Kaliyev AA; Zhelisbayeva KR; Tanideh N; Tamadon A
    ACS Biomater Sci Eng; 2024 May; 10(5):3316-3330. PubMed ID: 38619014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial Recombinant Human Bone Morphogenetic Protein 2 Delivery from Hydroxyapatite Scaffolds Sustains Bone Regeneration in Rabbit Radius.
    Ong JL; Shiels SM; Pearson J; Karajgar S; Miar S; Chiou G; Appleford MR; Wenke JC; Guda T
    Tissue Eng Part C Methods; 2022 Jul; 28(7):363-374. PubMed ID: 35615881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone Regeneration Using Adipose-Derived Stem Cells in Injectable Thermo-Gelling Hydrogel Scaffold Containing Platelet-Rich Plasma and Biphasic Calcium Phosphate.
    Liao HT; Tsai MJ; Brahmayya M; Chen JP
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30150580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone regeneration in minipigs via calcium phosphate cement scaffold delivering autologous bone marrow mesenchymal stem cells and platelet-rich plasma.
    Qiu G; Shi Z; Xu HHK; Yang B; Weir MD; Li G; Song Y; Wang J; Hu K; Wang P; Zhao L
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e937-e948. PubMed ID: 28102000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in situ photocrosslinkable platelet rich plasma - Complexed hydrogel glue with growth factor controlled release ability to promote cartilage defect repair.
    Liu X; Yang Y; Niu X; Lin Q; Zhao B; Wang Y; Zhu L
    Acta Biomater; 2017 Oct; 62():179-187. PubMed ID: 28501713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration.
    Zhang B; Zhang PB; Wang ZL; Lyu ZW; Wu H
    J Zhejiang Univ Sci B; 2017 Nov.; 18(11):963-976. PubMed ID: 29119734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of platelet-rich plasma gel and hyaluronan hydrogel as carriers of electrically polarized hydroxyapatite microgranules for accelerating bone formation.
    Ohba S; Wang W; Itoh S; Takagi Y; Nagai A; Yamashita K
    J Biomed Mater Res A; 2012 Nov; 100(11):3167-76. PubMed ID: 22847859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining mesenchymal stem cell sheets with platelet-rich plasma gel/calcium phosphate particles: a novel strategy to promote bone regeneration.
    Qi Y; Niu L; Zhao T; Shi Z; Di T; Feng G; Li J; Huang Z
    Stem Cell Res Ther; 2015 Dec; 6():256. PubMed ID: 26689714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness of mesenchymal stem cell-seeded onto the 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on the radius bone defect in rat.
    Oryan A; Hassanajili S; Sahvieh S; Azarpira N
    Life Sci; 2020 Sep; 257():118038. PubMed ID: 32622947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of pre-determined shape of bone segment with collagen-hydroxyapatite scaffold and autogenous platelet-rich plasma.
    Chang SH; Hsu YM; Wang YJ; Tsao YP; Tung KY; Wang TY
    J Mater Sci Mater Med; 2009 Jan; 20(1):23-31. PubMed ID: 18651114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced osteochondral repair by leukocyte-depleted platelet-rich plasma in combination with adipose-derived mesenchymal stromal cells encapsulated in a three-dimensional photocrosslinked injectable hydrogel in a rabbit model.
    Iseki T; Rothrauff BB; Kihara S; Overholt KJ; Taha T; Lin H; Alexander PG; Tuan RS
    Stem Cell Res Ther; 2024 Jun; 15(1):159. PubMed ID: 38831361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.