BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34008680)

  • 1. Real-time red blood cell counting and osmolarity analysis using a photoacoustic-based microfluidic system.
    Zhao W; Yu H; Wen Y; Luo H; Jia B; Wang X; Liu L; Li WJ
    Lab Chip; 2021 Jun; 21(13):2586-2593. PubMed ID: 34008680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of red blood cells' dynamic status in a simulated blood circulation system using an ultrahigh-speed simultaneous framing optical electronic camera.
    Zhang Q; Li Z; Zhao S; Wen W; Chang L; Yu H; Jiang T
    Cytometry A; 2017 Feb; 91(2):126-132. PubMed ID: 27517614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size and density measurements of single sickle red blood cells using microfluidic magnetic levitation.
    Goreke U; Bode A; Yaman S; Gurkan UA; Durmus NG
    Lab Chip; 2022 Feb; 22(4):683-696. PubMed ID: 35094036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow.
    Rodrigues RO; Pinho D; Faustino V; Lima R
    Biomed Microdevices; 2015 Dec; 17(6):108. PubMed ID: 26482154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Passive Microfluidic Device Based on Crossflow Filtration for Cell Separation Measurements: A Spectrophotometric Characterization.
    Faustino V; Catarino SO; Pinho D; Lima RA; Minas G
    Biosensors (Basel); 2018 Dec; 8(4):. PubMed ID: 30544881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [High throughput detection and characterization of red blood cells deformability by combining optical tweezers with microfluidic technique].
    Zhang M; Meng X; Zhu L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Oct; 37(5):848-854. PubMed ID: 33140609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red blood cell quantification microfluidic chip using polyelectrolytic gel electrodes.
    Kim KB; Chun H; Kim HC; Chung TD
    Electrophoresis; 2009 May; 30(9):1464-9. PubMed ID: 19340832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous acoustic and photoacoustic microfluidic flow cytometry for label-free analysis.
    Gnyawali V; Strohm EM; Wang JZ; Tsai SSH; Kolios MC
    Sci Rep; 2019 Feb; 9(1):1585. PubMed ID: 30733497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A system for the high-throughput measurement of the shear modulus distribution of human red blood cells.
    Saadat A; Huyke DA; Oyarzun DI; Escobar PV; Øvreeide IH; Shaqfeh ESG; Santiago JG
    Lab Chip; 2020 Aug; 20(16):2927-2936. PubMed ID: 32648561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An impedance based microfluidic sensor for evaluation of individual red blood cell solute permeability.
    Huang L; Jasim I; Alkorjia O; Agca C; Oksman A; Agca Y; Goldberg DE; Benson JD; Almasri M
    Anal Chim Acta; 2023 Aug; 1267():341226. PubMed ID: 37257960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemolysis prediction in bio-microfluidic applications using resolved CFD-DEM simulations.
    Porcaro C; Saeedipour M
    Comput Methods Programs Biomed; 2023 Apr; 231():107400. PubMed ID: 36774792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA; Hou HW; Li LD; Lim CT; Han J
    Lab Chip; 2011 Jun; 11(11):1870-8. PubMed ID: 21505682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in Microfluidics for Single Red Blood Cell Analysis.
    Grigorev GV; Lebedev AV; Wang X; Qian X; Maksimov GV; Lin L
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical design of microfluidic-microelectric hybrid chip for the separation of biological cells.
    Ye T; Li H; Lam KY
    Langmuir; 2011 Mar; 27(6):3188-97. PubMed ID: 21332176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of continuous-wave photoacoustic sensing to red blood cell morphology.
    Gorey A; Biswas D; Kumari A; Gupta S; Sharma N; Chen GCK; Vasudevan S
    Lasers Med Sci; 2019 Apr; 34(3):487-494. PubMed ID: 30136213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the Dielectrophoretic Separation of Red Blood Cells (RBCs) from B-Lymphocytes (B-Cells)
    Sahin O; Kosar A; Yapici MK
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1238-1241. PubMed ID: 34891511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical and photoacoustic radiofrequency spectroscopic analysis for detecting red blood cell death.
    Fadhel MN; Hysi E; Strohm EM; Kolios MC
    J Biophotonics; 2019 Sep; 12(9):e201800431. PubMed ID: 31050867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microconfined flow behavior of red blood cells.
    Tomaiuolo G; Lanotte L; D'Apolito R; Cassinese A; Guido S
    Med Eng Phys; 2016 Jan; 38(1):11-6. PubMed ID: 26071649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput and Label-Free Blood-on-a-Chip for Malaria Diagnosis.
    Kang YJ; Ha YR; Lee SJ
    Anal Chem; 2016 Mar; 88(5):2912-22. PubMed ID: 26845250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.