These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34008681)

  • 41. Applications of Microfluidics and Organ-on-a-Chip in Cancer Research.
    Regmi S; Poudel C; Adhikari R; Luo KQ
    Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884262
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Size-Controlled Fabrication of Polyaniline Microfibers Based on 3D Hydrodynamic Focusing Approach.
    Yoo I; Song S; Uh K; Lee CW; Kim JM
    Macromol Rapid Commun; 2015 Jul; 36(13):1272-6. PubMed ID: 25882095
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Conductive Polymer Hydrogel Microfibers from Multiflow Microfluidics.
    Guo J; Yu Y; Wang H; Zhang H; Zhang X; Zhao Y
    Small; 2019 Apr; 15(15):e1805162. PubMed ID: 30884163
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomimetic design of microfluidic manifolds based on a generalised Murray's law.
    Emerson DR; Cieślicki K; Gu X; Barber RW
    Lab Chip; 2006 Mar; 6(3):447-54. PubMed ID: 16511629
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A microfluidic strategy to fabricate ultra-thin polyelectrolyte hollow microfibers as 3D cellular carriers.
    Liu H; Wang Y; Chen W; Yu Y; Jiang L; Qin J
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109705. PubMed ID: 31499950
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Mechanical Analysis of the Biofilm Streamer Nucleation and Geometry Characterization in Microfluidic Channels.
    Wang X; Hao M; Du X; Wang G; Matsushita J
    Comput Math Methods Med; 2016; 2016():7819403. PubMed ID: 27313658
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-Performance Microsupercapacitors Based on Bioinspired Graphene Microfibers.
    Pan H; Wang D; Peng Q; Ma J; Meng X; Zhang Y; Ma Y; Zhu S; Zhang D
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10157-10164. PubMed ID: 29512996
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polymorphic calcium alginate microfibers assembled using a programmable microfluidic field for cell regulation.
    Huang Q; Li Y; Fan L; Xin JH; Yu H; Ye D
    Lab Chip; 2020 Aug; 20(17):3158-3166. PubMed ID: 32696776
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A novel microfluidic chip-based sperm-sorting device constructed using design of experiment method.
    Phiphattanaphiphop C; Leksakul K; Phatthanakun R; Khamlor T
    Sci Rep; 2020 Oct; 10(1):17143. PubMed ID: 33051512
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Generation of perfusable hollow calcium alginate microfibers with a double co-axial flow capillary microfluidic device.
    Gao C; Wang X; Du Q; Tang J; Jiang J
    Biomicrofluidics; 2019 Nov; 13(6):064108. PubMed ID: 31737157
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microfluidic Fabrication of Multistimuli-Responsive Tubular Hydrogels for Cellular Scaffolds.
    Kim D; Jo A; Imani KBC; Kim D; Chung JW; Yoon J
    Langmuir; 2018 Apr; 34(14):4351-4359. PubMed ID: 29553747
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hourglass-Shaped Microfibers.
    Shi R; Tian Y; Zhu P; Tang X; Tian X; Zhou C; Wang L
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29747-29756. PubMed ID: 32501675
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering.
    Hwang CM; Khademhosseini A; Park Y; Sun K; Lee SH
    Langmuir; 2008 Jun; 24(13):6845-51. PubMed ID: 18512874
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioinspired Multifunctional Spindle-Knotted Microfibers from Microfluidics.
    Shang L; Fu F; Cheng Y; Yu Y; Wang J; Gu Z; Zhao Y
    Small; 2017 Jan; 13(4):. PubMed ID: 27071374
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Critical design parameters to develop biomimetic organ-on-a-chip models for the evaluation of the safety and efficacy of nanoparticles.
    Abdelkarim M; Perez-Davalos L; Abdelkader Y; Abostait A; Labouta HI
    Expert Opin Drug Deliv; 2023 Jan; 20(1):13-30. PubMed ID: 36440475
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrically-responsive core-shell hybrid microfibers for controlled drug release and cell culture.
    Chen C; Chen X; Zhang H; Zhang Q; Wang L; Li C; Dai B; Yang J; Liu J; Sun D
    Acta Biomater; 2017 Jun; 55():434-442. PubMed ID: 28392307
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Frugal Approach toward Developing a Biomimetic, Microfluidic Network-on-a-Chip for In Vitro Analysis of Microvascular Physiology.
    Priyadarshani J; Roy T; Das S; Chakraborty S
    ACS Biomater Sci Eng; 2021 Mar; 7(3):1263-1277. PubMed ID: 33555875
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multiple Bio-Actives Loaded Gellan Gum Microfibers from Microfluidics for Wound Healing.
    Guo J; Yu Y; Shen Y; Sun X; Bi Y; Zhao Y
    Small; 2023 Nov; 19(44):e2303887. PubMed ID: 37392054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.