BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34009289)

  • 1. HEAL: an automated deep learning framework for cancer histopathology image analysis.
    Wang Y; Coudray N; Zhao Y; Li F; Hu C; Zhang YZ; Imoto S; Tsirigos A; Webb GI; Daly RJ; Song J
    Bioinformatics; 2021 Nov; 37(22):4291-4295. PubMed ID: 34009289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DEMoS: a deep learning-based ensemble approach for predicting the molecular subtypes of gastric adenocarcinomas from histopathological images.
    Wang Y; Hu C; Kwok T; Bain CA; Xue X; Gasser RB; Webb GI; Boussioutas A; Shen X; Daly RJ; Song J
    Bioinformatics; 2022 Sep; 38(17):4206-4213. PubMed ID: 35801909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based framework for slide-based histopathological image analysis.
    Kosaraju S; Park J; Lee H; Yang JW; Kang M
    Sci Rep; 2022 Nov; 12(1):19075. PubMed ID: 36351997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DLBI: deep learning guided Bayesian inference for structure reconstruction of super-resolution fluorescence microscopy.
    Li Y; Xu F; Zhang F; Xu P; Zhang M; Fan M; Li L; Gao X; Han R
    Bioinformatics; 2018 Jul; 34(13):i284-i294. PubMed ID: 29950012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. minoTour, real-time monitoring and analysis for nanopore sequencers.
    Munro R; Santos R; Payne A; Forey T; Osei S; Holmes N; Loose M
    Bioinformatics; 2022 Jan; 38(4):1133-1135. PubMed ID: 34791062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep-Hipo: Multi-scale receptive field deep learning for histopathological image analysis.
    Kosaraju SC; Hao J; Koh HM; Kang M
    Methods; 2020 Jul; 179():3-13. PubMed ID: 32442672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning for colon cancer histopathological images analysis.
    Ben Hamida A; Devanne M; Weber J; Truntzer C; Derangère V; Ghiringhelli F; Forestier G; Wemmert C
    Comput Biol Med; 2021 Sep; 136():104730. PubMed ID: 34375901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ProteomeExpert: a Docker image-based web server for exploring, modeling, visualizing and mining quantitative proteomic datasets.
    Zhu T; Chen H; Yan X; Wu Z; Zhou X; Xiao Q; Ge W; Zhang Q; Xu C; Xu L; Ruan G; Xue Z; Yuan C; Chen GB; Guo T
    Bioinformatics; 2021 Apr; 37(2):273-275. PubMed ID: 33416829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ICBdocker: a Docker image for proteome annotation and visualization.
    Bordin N; Devos DP
    Bioinformatics; 2018 Nov; 34(22):3937-3938. PubMed ID: 29931249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Context-aware learning for cancer cell nucleus recognition in pathology images.
    Bai T; Xu J; Zhang Z; Guo S; Luo X
    Bioinformatics; 2022 May; 38(10):2892-2898. PubMed ID: 35561198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the feasibility of deep learning applications using raw mass spectrometry data.
    Cadow J; Manica M; Mathis R; Guo T; Aebersold R; Rodríguez Martínez M
    Bioinformatics; 2021 Jul; 37(Suppl_1):i245-i253. PubMed ID: 34252933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BeadNet: deep learning-based bead detection and counting in low-resolution microscopy images.
    Scherr T; Streule K; Bartschat A; Böhland M; Stegmaier J; Reischl M; Orian-Rousseau V; Mikut R
    Bioinformatics; 2020 Nov; 36(17):4668-4670. PubMed ID: 32589734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features.
    Xu Y; Jia Z; Wang LB; Ai Y; Zhang F; Lai M; Chang EI
    BMC Bioinformatics; 2017 May; 18(1):281. PubMed ID: 28549410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-learning approach to identifying cancer subtypes using high-dimensional genomic data.
    Chen R; Yang L; Goodison S; Sun Y
    Bioinformatics; 2020 Mar; 36(5):1476-1483. PubMed ID: 31603461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. easyPheno: An easy-to-use and easy-to-extend Python framework for phenotype prediction using Bayesian optimization.
    Haselbeck F; John M; Grimm DG
    Bioinform Adv; 2023; 3(1):vbad035. PubMed ID: 37066135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CImbinator: a web-based tool for drug synergy analysis in small- and large-scale datasets.
    Flobak Å; Vazquez M; Lægreid A; Valencia A
    Bioinformatics; 2017 Aug; 33(15):2410-2412. PubMed ID: 28444126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepCleave: a deep learning predictor for caspase and matrix metalloprotease substrates and cleavage sites.
    Li F; Chen J; Leier A; Marquez-Lago T; Liu Q; Wang Y; Revote J; Smith AI; Akutsu T; Webb GI; Kurgan L; Song J
    Bioinformatics; 2020 Feb; 36(4):1057-1065. PubMed ID: 31566664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CREDO: a friendly Customizable, REproducible, DOcker file generator for bioinformatics applications.
    Alessandri S; Ratto ML; Rabellino S; Piacenti G; Contaldo SG; Pernice S; Beccuti M; Calogero RA; Alessandri L
    BMC Bioinformatics; 2024 Mar; 25(1):110. PubMed ID: 38475691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CompAIRR: ultra-fast comparison of adaptive immune receptor repertoires by exact and approximate sequence matching.
    Rognes T; Scheffer L; Greiff V; Sandve GK
    Bioinformatics; 2022 Sep; 38(17):4230-4232. PubMed ID: 35852318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study.
    Faes L; Wagner SK; Fu DJ; Liu X; Korot E; Ledsam JR; Back T; Chopra R; Pontikos N; Kern C; Moraes G; Schmid MK; Sim D; Balaskas K; Bachmann LM; Denniston AK; Keane PA
    Lancet Digit Health; 2019 Sep; 1(5):e232-e242. PubMed ID: 33323271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.