These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 34009383)

  • 21. The oxDNA Coarse-Grained Model as a Tool to Simulate DNA Origami.
    Doye JPK; Fowler H; Prešern D; Bohlin J; Rovigatti L; Romano F; Šulc P; Wong CK; Louis AA; Schreck JS; Engel MC; Matthies M; Benson E; Poppleton E; Snodin BEK
    Methods Mol Biol; 2023; 2639():93-112. PubMed ID: 37166713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Force-Induced Unravelling of DNA Origami.
    Engel MC; Smith DM; Jobst MA; Sajfutdinow M; Liedl T; Romano F; Rovigatti L; Louis AA; Doye JPK
    ACS Nano; 2018 Jul; 12(7):6734-6747. PubMed ID: 29851456
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coarse-graining RNA nanostructures for molecular dynamics simulations.
    Paliy M; Melnik R; Shapiro BA
    Phys Biol; 2010 Jun; 7(3):036001. PubMed ID: 20577037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA elasticity from coarse-grained simulations: The effect of groove asymmetry.
    Skoruppa E; Laleman M; Nomidis SK; Carlon E
    J Chem Phys; 2017 Jun; 146(21):214902. PubMed ID: 28595422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterizing DNA Star-Tile-Based Nanostructures Using a Coarse-Grained Model.
    Schreck JS; Romano F; Zimmer MH; Louis AA; Doye JP
    ACS Nano; 2016 Apr; 10(4):4236-47. PubMed ID: 27010928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protocols for Molecular Dynamics Simulations of RNA Nanostructures.
    Kim T; Kasprzak WK; Shapiro BA
    Methods Mol Biol; 2017; 1632():33-64. PubMed ID: 28730431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Versatile computer-aided design of free-form DNA nanostructures and assemblies.
    Pfeifer WG; Huang CM; Poirier MG; Arya G; Castro CE
    Sci Adv; 2023 Jul; 9(30):eadi0697. PubMed ID: 37494445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coarse-grained simulations of RNA and DNA duplexes.
    Cragnolini T; Derreumaux P; Pasquali S
    J Phys Chem B; 2013 Jul; 117(27):8047-60. PubMed ID: 23730911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coarse-grained modelling of the structural properties of DNA origami.
    Snodin BEK; Schreck JS; Romano F; Louis AA; Doye JPK
    Nucleic Acids Res; 2019 Feb; 47(3):1585-1597. PubMed ID: 30605514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coarse-Grained Simulations for the Characterization and Optimization of Hybrid Protein-DNA Nanostructures.
    Narayanan RP; Procyk J; Nandi P; Prasad A; Xu Y; Poppleton E; Williams D; Zhang F; Yan H; Chiu PL; Stephanopoulos N; Šulc P
    ACS Nano; 2022 Sep; 16(9):14086-14096. PubMed ID: 35980981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA bipedal motor walking dynamics: an experimental and theoretical study of the dependency on step size.
    Khara DC; Schreck JS; Tomov TE; Berger Y; Ouldridge TE; Doye JPK; Nir E
    Nucleic Acids Res; 2018 Feb; 46(3):1553-1561. PubMed ID: 29294083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CATANA: an online modelling environment for proteins and nucleic acid nanostructures.
    Kuťák D; Melo L; Schroeder F; Jelic-Matošević Z; Mutter N; Bertoša B; Barišić I
    Nucleic Acids Res; 2022 Jul; 50(W1):W152-W158. PubMed ID: 35544315
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNA-TVcurve: a Web server for RNA secondary structure comparison based on a multi-scale similarity of its triple vector curve representation.
    Li Y; Shi X; Liang Y; Xie J; Zhang Y; Ma Q
    BMC Bioinformatics; 2017 Jan; 18(1):51. PubMed ID: 28109252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. webSDA: a web server to simulate macromolecular diffusional association.
    Yu X; Martinez M; Gable AL; Fuller JC; Bruce NJ; Richter S; Wade RC
    Nucleic Acids Res; 2015 Jul; 43(W1):W220-4. PubMed ID: 25883142
    [TBL] [Abstract][Full Text] [Related]  

  • 35. OpenAWSEM with Open3SPN2: A fast, flexible, and accessible framework for large-scale coarse-grained biomolecular simulations.
    Lu W; Bueno C; Schafer NP; Moller J; Jin S; Chen X; Chen M; Gu X; Davtyan A; de Pablo JJ; Wolynes PG
    PLoS Comput Biol; 2021 Feb; 17(2):e1008308. PubMed ID: 33577557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation.
    Li J; Green AA; Yan H; Fan C
    Nat Chem; 2017 Nov; 9(11):1056-1067. PubMed ID: 29064489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decoding the conformation-linked functional properties of nucleic acids by the use of computational tools.
    Iacovelli F; Falconi M
    FEBS J; 2015 Sep; 282(17):3298-310. PubMed ID: 25940731
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA.
    Snodin BE; Randisi F; Mosayebi M; Šulc P; Schreck JS; Romano F; Ouldridge TE; Tsukanov R; Nir E; Louis AA; Doye JP
    J Chem Phys; 2015 Jun; 142(23):234901. PubMed ID: 26093573
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SMOG@ctbp: simplified deployment of structure-based models in GROMACS.
    Noel JK; Whitford PC; Sanbonmatsu KY; Onuchic JN
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W657-61. PubMed ID: 20525782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing the Mechanical Properties of DNA Nanostructures with Metadynamics.
    Kaufhold WT; Pfeifer W; Castro CE; Di Michele L
    ACS Nano; 2022 Jun; 16(6):8784-8797. PubMed ID: 35580231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.