These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 34009390)

  • 1. Ectopic expression of Triticum polonicum VRT-A2 underlies elongated glumes and grains in hexaploid wheat in a dosage-dependent manner.
    Adamski NM; Simmonds J; Brinton JF; Backhaus AE; Chen Y; Smedley M; Hayta S; Florio T; Crane P; Scott P; Pieri A; Hall O; Barclay JE; Clayton M; Doonan JH; Nibau C; Uauy C
    Plant Cell; 2021 Aug; 33(7):2296-2319. PubMed ID: 34009390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ectopic expression of VRT-A2 underlies the origin of Triticum polonicum and Triticum petropavlovskyi with long outer glumes and grains.
    Liu J; Chen Z; Wang Z; Zhang Z; Xie X; Wang Z; Chai L; Song L; Cheng X; Feng M; Wang X; Liu Y; Hu Z; Xing J; Su Z; Peng H; Xin M; Yao Y; Guo W; Sun Q; Liu J; Ni Z
    Mol Plant; 2021 Sep; 14(9):1472-1488. PubMed ID: 34048948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Triticum ispahanicum elongated glume locus P2 maps to chromosome 6A and is associated with the ectopic expression of SVP-A1.
    Chen Y; Liu Y; Zhang J; Torrance A; Watanabe N; Adamski NM; Uauy C
    Theor Appl Genet; 2022 Jul; 135(7):2313-2331. PubMed ID: 35583655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A natural variation of an SVP MADS-box transcription factor in Triticum petropavlovskyi leads to its ectopic expression and contributes to elongated glume.
    Xiao J; Chen Y; Lu Y; Liu Z; Si D; Xu T; Sun L; Wang Z; Yuan C; Sun H; Zhang X; Wen M; Wei L; Zhang W; Wang H; Wang X
    Mol Plant; 2021 Sep; 14(9):1408-1411. PubMed ID: 34048949
    [No Abstract]   [Full Text] [Related]  

  • 5. APETALA 2-like genes AP2L2 and Q specify lemma identity and axillary floral meristem development in wheat.
    Debernardi JM; Greenwood JR; Jean Finnegan E; Jernstedt J; Dubcovsky J
    Plant J; 2020 Jan; 101(1):171-187. PubMed ID: 31494998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains.
    Simmonds J; Scott P; Brinton J; Mestre TC; Bush M; Del Blanco A; Dubcovsky J; Uauy C
    Theor Appl Genet; 2016 Jun; 129(6):1099-112. PubMed ID: 26883045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic and molecular characterization of the VRN2 loci in tetraploid wheat.
    Distelfeld A; Tranquilli G; Li C; Yan L; Dubcovsky J
    Plant Physiol; 2009 Jan; 149(1):245-57. PubMed ID: 19005084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High expression of the MADS-box gene VRT2 increases the number of rudimentary basal spikelets in wheat.
    Backhaus AE; Lister A; Tomkins M; Adamski NM; Simmonds J; Macaulay I; Morris RJ; Haerty W; Uauy C
    Plant Physiol; 2022 Jun; 189(3):1536-1552. PubMed ID: 35377414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A modified intron of VRT2 drives glume and grain elongation in wheat.
    Dixon LE; Boden SA
    Mol Plant; 2021 Sep; 14(9):1421-1423. PubMed ID: 34450345
    [No Abstract]   [Full Text] [Related]  

  • 10. Interactions between SQUAMOSA and SHORT VEGETATIVE PHASE MADS-box proteins regulate meristem transitions during wheat spike development.
    Li K; Debernardi JM; Li C; Lin H; Zhang C; Jernstedt J; Korff MV; Zhong J; Dubcovsky J
    Plant Cell; 2021 Dec; 33(12):3621-3644. PubMed ID: 34726755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterochronic development of the floret meristem determines grain number per spikelet in diploid, tetraploid and hexaploid wheats.
    Shitsukawa N; Kinjo H; Takumi S; Murai K
    Ann Bot; 2009 Aug; 104(2):243-51. PubMed ID: 19491089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homoeologous copy-specific expression patterns of MADS-box genes for floral formation in allopolyploid wheat.
    Tanaka M; Tanaka H; Shitsukawa N; Kitagawa S; Takumi S; Murai K
    Genes Genet Syst; 2016; 90(4):217-29. PubMed ID: 26616759
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Dixon LE; Greenwood JR; Bencivenga S; Zhang P; Cockram J; Mellers G; Ramm K; Cavanagh C; Swain SM; Boden SA
    Plant Cell; 2018 Mar; 30(3):563-581. PubMed ID: 29444813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unleashing floret fertility in wheat through the mutation of a homeobox gene.
    Sakuma S; Golan G; Guo Z; Ogawa T; Tagiri A; Sugimoto K; Bernhardt N; Brassac J; Mascher M; Hensel G; Ohnishi S; Jinno H; Yamashita Y; Ayalon I; Peleg Z; Schnurbusch T; Komatsuda T
    Proc Natl Acad Sci U S A; 2019 Mar; 116(11):5182-5187. PubMed ID: 30792353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and comparative analysis of carotenoid β-hydroxylase genes provides new insights into carotenoid metabolism in tetraploid (Triticum turgidum ssp. durum) and hexaploid (Triticum aestivum) wheat grains.
    Qin X; Zhang W; Dubcovsky J; Tian L
    Plant Mol Biol; 2012 Dec; 80(6):631-46. PubMed ID: 23015203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of genetic diversity among Xinjiang Triticum and Triticum polonicum by AFLP markers.
    Akond MA; Watanabe N; Furuta Y
    J Appl Genet; 2007; 48(1):25-33. PubMed ID: 17272858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat.
    Zhu J; Pearce S; Burke A; See DR; Skinner DZ; Dubcovsky J; Garland-Campbell K
    Theor Appl Genet; 2014 May; 127(5):1183-97. PubMed ID: 24626953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recurrent deletions of puroindoline genes at the grain hardness locus in four independent lineages of polyploid wheat.
    Li W; Huang L; Gill BS
    Plant Physiol; 2008 Jan; 146(1):200-12. PubMed ID: 18024553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat.
    Dvorak J; Akhunov ED; Akhunov AR; Deal KR; Luo MC
    Mol Biol Evol; 2006 Jul; 23(7):1386-96. PubMed ID: 16675504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Map-based analysis of the tenacious glume gene Tg-B1 of wild emmer and its role in wheat domestication.
    Faris JD; Zhang Z; Chao S
    Gene; 2014 Jun; 542(2):198-208. PubMed ID: 24657062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.