These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 34009740)
1. Unoccupied aerial systems discovered overlooked loci capturing the variation of entire growing period in maize. Adak A; Murray SC; Anderson SL; Popescu SC; Malambo L; Romay MC; de Leon N Plant Genome; 2021 Jul; 14(2):e20102. PubMed ID: 34009740 [TBL] [Abstract][Full Text] [Related]
2. Validation of functional polymorphisms affecting maize plant height by unoccupied aerial systems discovers novel temporal phenotypes. Adak A; Conrad C; Chen Y; Wilde SC; Murray SC; Anderson Ii SL; Subramanian NK G3 (Bethesda); 2021 Jun; 11(6):. PubMed ID: 33822935 [TBL] [Abstract][Full Text] [Related]
3. Cumulative temporal vegetation indices from unoccupied aerial systems allow maize (Zea mays L.) hybrid yield to be estimated across environments with fewer flights. Chatterjee S; Adak A; Wilde S; Nakasagga S; Murray SC PLoS One; 2023; 18(1):e0277804. PubMed ID: 36701283 [TBL] [Abstract][Full Text] [Related]
4. Integration of high-throughput phenotyping, GWAS, and predictive models reveals the genetic architecture of plant height in maize. Wang W; Guo W; Le L; Yu J; Wu Y; Li D; Wang Y; Wang H; Lu X; Qiao H; Gu X; Tian J; Zhang C; Pu L Mol Plant; 2023 Feb; 16(2):354-373. PubMed ID: 36447436 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide association screening and verification of potential genes associated with root architectural traits in maize (Zea mays L.) at multiple seedling stages. Moussa AA; Mandozai A; Jin Y; Qu J; Zhang Q; Zhao H; Anwari G; Khalifa MAS; Lamboro A; Noman M; Bakasso Y; Zhang M; Guan S; Wang P BMC Genomics; 2021 Jul; 22(1):558. PubMed ID: 34284723 [TBL] [Abstract][Full Text] [Related]
6. Genome-Wide Association and Gene Co-expression Network Analyses Reveal Complex Genetics of Resistance to Goss's Wilt of Maize. Singh A; Li G; Brohammer AB; Jarquin D; Hirsch CN; Alfano JR; Lorenz AJ G3 (Bethesda); 2019 Oct; 9(10):3139-3152. PubMed ID: 31362973 [TBL] [Abstract][Full Text] [Related]
7. Genetic architecture of maize kernel row number and whole genome prediction. Liu L; Du Y; Huo D; Wang M; Shen X; Yue B; Qiu F; Zheng Y; Yan J; Zhang Z Theor Appl Genet; 2015 Nov; 128(11):2243-54. PubMed ID: 26188589 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide association analysis of salt tolerance QTLs with SNP markers in maize (Zea mays L.). Xie Y; Feng Y; Chen Q; Zhao F; Zhou S; Ding Y; Song X; Li P; Wang B Genes Genomics; 2019 Oct; 41(10):1135-1145. PubMed ID: 31243730 [TBL] [Abstract][Full Text] [Related]
9. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. Zhou Z; Zhang C; Zhou Y; Hao Z; Wang Z; Zeng X; Di H; Li M; Zhang D; Yong H; Zhang S; Weng J; Li X BMC Genomics; 2016 Mar; 17():178. PubMed ID: 26940065 [TBL] [Abstract][Full Text] [Related]
10. The Genetic Basis of Plant Architecture in 10 Maize Recombinant Inbred Line Populations. Pan Q; Xu Y; Li K; Peng Y; Zhan W; Li W; Li L; Yan J Plant Physiol; 2017 Oct; 175(2):858-873. PubMed ID: 28838954 [TBL] [Abstract][Full Text] [Related]
11. DArTseq-Based High-Throughput SilicoDArT and SNP Markers Applied for Association Mapping of Genes Related to Maize Morphology. Tomkowiak A; Bocianowski J; Spychała J; Grynia J; Sobiech A; Kowalczewski PŁ Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072515 [TBL] [Abstract][Full Text] [Related]
12. Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. Li C; Sun B; Li Y; Liu C; Wu X; Zhang D; Shi Y; Song Y; Buckler ES; Zhang Z; Wang T; Li Y BMC Genomics; 2016 Nov; 17(1):894. PubMed ID: 27825295 [TBL] [Abstract][Full Text] [Related]
13. Genome wide association study and genomic prediction for stover quality traits in tropical maize (Zea mays L.). Vinayan MT; Seetharam K; Babu R; Zaidi PH; Blummel M; Nair SK Sci Rep; 2021 Jan; 11(1):686. PubMed ID: 33436870 [TBL] [Abstract][Full Text] [Related]
14. Genome-Wide Analysis of Tar Spot Complex Resistance in Maize Using Genotyping-by-Sequencing SNPs and Whole-Genome Prediction. Cao S; Loladze A; Yuan Y; Wu Y; Zhang A; Chen J; Huestis G; Cao J; Chaikam V; Olsen M; Prasanna BM; San Vicente F; Zhang X Plant Genome; 2017 Jul; 10(2):. PubMed ID: 28724072 [TBL] [Abstract][Full Text] [Related]
15. Genome wide association mapping for heat tolerance in sub-tropical maize. Longmei N; Gill GK; Zaidi PH; Kumar R; Nair SK; Hindu V; Vinayan MT; Vikal Y BMC Genomics; 2021 Mar; 22(1):154. PubMed ID: 33663389 [TBL] [Abstract][Full Text] [Related]
16. Genetic variation of growth dynamics in maize (Zea mays L.) revealed through automated non-invasive phenotyping. Muraya MM; Chu J; Zhao Y; Junker A; Klukas C; Reif JC; Altmann T Plant J; 2017 Jan; 89(2):366-380. PubMed ID: 27714888 [TBL] [Abstract][Full Text] [Related]
17. Combined GWAS and QTL analysis for dissecting the genetic architecture of kernel test weight in maize. Zhang X; Guan Z; Wang L; Fu J; Zhang Y; Li Z; Ma L; Liu P; Zhang Y; Liu M; Li P; Zou C; He Y; Lin H; Yuan G; Gao S; Pan G; Shen Y Mol Genet Genomics; 2020 Mar; 295(2):409-420. PubMed ID: 31807910 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide association study (GWAS) reveals the genetic architecture of four husk traits in maize. Cui Z; Luo J; Qi C; Ruan Y; Li J; Zhang A; Yang X; He Y BMC Genomics; 2016 Nov; 17(1):946. PubMed ID: 27871222 [TBL] [Abstract][Full Text] [Related]
19. Phenomic data-facilitated rust and senescence prediction in maize using machine learning algorithms. DeSalvio AJ; Adak A; Murray SC; Wilde SC; Isakeit T Sci Rep; 2022 May; 12(1):7571. PubMed ID: 35534655 [TBL] [Abstract][Full Text] [Related]
20. Genome-Wide Association Study of 13 Traits in Maize Seedlings under Low Phosphorus Stress. Wang QJ; Yuan Y; Liao Z; Jiang Y; Wang Q; Zhang L; Gao S; Wu F; Li M; Xie W; Liu T; Xu J; Liu Y; Feng X; Lu Y Plant Genome; 2019 Nov; 12(3):1-13. PubMed ID: 33016582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]