These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34009932)

  • 1. Oxygen Vacancies Boosting Lithium-Ion Diffusion Kinetics of Lithium Germanate for High-Performance Lithium Storage.
    Li L; Meng T; Wang J; Mao B; Huang J; Cao M
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24804-24813. PubMed ID: 34009932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen Vacancy Enhanced Two-Dimensional Lithium Titanate for Ultrafast and Long-Life Bifunctional Lithium Storage.
    Liu Z; Huang Y; Cai Y; Wang X; Zhang Y; Guo Y; Ding J; Cheng W
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18876-18886. PubMed ID: 33871971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulating the Electronic Configuration of Spinel Zinc Manganate Derived from Metal-Organic Frameworks: Controlled Synthesis and Application in Anode Materials for Lithium-Ion Batteries.
    Du W; Liu J; Zeb A; Lin X
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37652-37666. PubMed ID: 35960813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulating the electronic structure of MoO
    Guo D; Yang M; Wang F; Cheng Y; Zhang A; Liu G; Wu N; Cao A; Mi H; Liu X
    Dalton Trans; 2022 Aug; 51(33):12620-12629. PubMed ID: 35925026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic Structure and Iron-Vacancy Engineering Realizing High Initial Coulombic Efficiency and Kinetically Accelerated Lithium Storage in Lithium Iron Oxide.
    Wu N; Shen J; Yong K; Chen C; Li J; Xie Y; Guo D; Liu G; Li J; Cao A; Liu X; Mi H; Wu H
    Adv Sci (Weinh); 2023 Mar; 10(9):e2206574. PubMed ID: 36683228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Nonstoichiometric Niobium Oxide Anode Material with Rich Oxygen Vacancies for Advanced Lithium-Ion Capacitors.
    Liu C; Wang B; Xu L; Zou K; Deng W; Hou H; Zou G; Ji X
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5387-5398. PubMed ID: 36692035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cobalt vacancies assisted ion diffusion in Co
    Shi Q; Zhang Y; Chen K; Yuan S; Chang T; Tian F; Si W; Cheng Y; Yao K; Yang S; Zhou X
    Dalton Trans; 2020 Aug; 49(29):10127-10137. PubMed ID: 32662454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen vacancies enhance the lithium ion intercalation pseudocapacitive properties of orthorhombic niobium pentoxide.
    Zhang S; Liu G; Qiao W; Wang J; Ling L
    J Colloid Interface Sci; 2020 Mar; 562():193-203. PubMed ID: 31838355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical porous NiCo
    Zhao L; Wang L; Yu P; Tian C; Feng H; Diao Z; Fu H
    Dalton Trans; 2017 Apr; 46(14):4717-4723. PubMed ID: 28332673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of carbon and oxygen vacancy co-modified TiNb
    Shang Y; Lu S; Zheng W; Wang R; Liang Z; Huang Y; Mei J; Yang Y; Zeng W; Zhan H
    RSC Adv; 2022 Apr; 12(21):13127-13134. PubMed ID: 35497001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Rate and Stable Li-Ion Insertion in Oxygen-Deficient LiV
    Song H; Luo M; Wang A
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2875-2882. PubMed ID: 28029237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of One-Dimensional Mesoporous Ag Nanoparticles-Modified TiO
    Zhang Y; Li J; Li W; Kang D
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31426615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic layer deposition of ZnO on carbon black as nanostructured anode materials for high-performance lithium-ion batteries.
    Lu S; Wang H; Zhou J; Wu X; Qin W
    Nanoscale; 2017 Jan; 9(3):1184-1192. PubMed ID: 28009909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Nanofiber Architecture and Antimony Doping on the Performance of Lithium-Rich Layered Oxides: Enhancing Lithium Diffusivity and Lattice Oxygen Stability.
    Yu R; Zhang Z; Jamil S; Chen J; Zhang X; Wang X; Yang Z; Shu H; Yang X
    ACS Appl Mater Interfaces; 2018 May; 10(19):16561-16571. PubMed ID: 29697250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting Fe Cationic Vacancies with Graphdiyne to Enhance Exceptional Pseudocapacitive Lithium Intercalation.
    Gao J; Yan X; Huang C; Zhang Z; Fu X; Chang Q; He F; Li M; Li Y
    Angew Chem Int Ed Engl; 2023 Aug; 62(35):e202307874. PubMed ID: 37408177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unusual pseudocapacitive lithium-ion storage on defective Co
    Avvaru VS; Vincent M; Fernandez IJ; Hinder SJ; Etacheri V
    Nanotechnology; 2022 Mar; 33(22):. PubMed ID: 35158338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Hierarchical CoO Nanospheres Wrapped by Graphene via Controllable Sulfur Doping for Superior Li Ion Storage.
    Hu Y; Li Z; Hu Z; Wang L; Ma R; Wang J
    Small; 2020 Oct; 16(42):e2003643. PubMed ID: 32996291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical Performance of (MgCoNiZn)
    Lökçü E; Toparli Ç; Anik M
    ACS Appl Mater Interfaces; 2020 May; 12(21):23860-23866. PubMed ID: 32368889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen Defect and Cl
    Cui P; Zhang P; Chen X; Chen X; Wan T; Zhou Y; Su M; Liu Y; Xu H; Chu D
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43745-43755. PubMed ID: 37695646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.