These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34010125)

  • 1. In-the-Wild Interference Characterization and Modelling for Electro-Quasistatic-HBC With Miniaturized Wearables.
    Yang D; Mehrotra P; Weigand S; Sen S
    IEEE Trans Biomed Eng; 2021 Sep; 68(9):2858-2869. PubMed ID: 34010125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-Physical Modeling, Characterization, and Optimization of Electro-Quasistatic Human Body Communication.
    Maity S; He M; Nath M; Das D; Chatterjee B; Sen S
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1791-1802. PubMed ID: 30403618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enabling Covert Body Area Network using Electro-Quasistatic Human Body Communication.
    Das D; Maity S; Chatterjee B; Sen S
    Sci Rep; 2019 Mar; 9(1):4160. PubMed ID: 30858385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating on the Interferences on Human Body Communication System Induced by Other Wearable Devices.
    Mao J
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4044-4047. PubMed ID: 31946759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter-body coupling in electro-quasistatic human body communication: theory and analysis of security and interference properties.
    Nath M; Maity S; Avlani S; Weigand S; Sen S
    Sci Rep; 2021 Feb; 11(1):4378. PubMed ID: 33623092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the Role of Magnetic and Magneto-Quasistatic Fields in Human Body Communication.
    Nath MN; Ulvog AK; Weigand S; Sen S
    IEEE Trans Biomed Eng; 2022 Dec; 69(12):3635-3644. PubMed ID: 35560087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Analysis of AM and FM Interference Robustness of Integrating DDR Receiver for Human Body Communication.
    Maity S; Jiang X; Sen S
    IEEE Trans Biomed Circuits Syst; 2019 Jun; 13(3):566-578. PubMed ID: 30990439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced Biophysical Model to Capture Channel Variability for EQS Capacitive HBC.
    Datta A; Nath M; Yang D; Sen S
    IEEE Trans Biomed Eng; 2021 Nov; 68(11):3435-3446. PubMed ID: 33872142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable health monitoring using capacitive voltage-mode Human Body Communication.
    Maity S; Das D; Sen S
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1-4. PubMed ID: 29059795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electro-Quasistatic Human-Structure Coupling for Human Presence Detection and Secure Data Offloading.
    Sarkar S; Datta A; Nath M; Yang D; Maity S; Sen S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Investigation on Ground Electrodes of Capacitive Coupling Human Body Communication.
    Mao J; Yang H; Zhao B
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):910-919. PubMed ID: 28541910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of Backscatter Communication Using LoRAWAN Signals for Deep Implanted Devices and Wearable Applications.
    Lazaro M; Lazaro A; Villarino R
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33172140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-Physical Modeling of Galvanic Human Body Communication in Electro-Quasistatic Regime.
    Modak N; Nath M; Chatterjee B; Maity S; Sen S
    IEEE Trans Biomed Eng; 2022 Dec; 69(12):3717-3727. PubMed ID: 35594211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Survey on Wireless Wearable Body Area Networks: A Perspective of Technology and Economy.
    Bhatti DS; Saleem S; Imran A; Iqbal Z; Alzahrani A; Kim H; Kim KI
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Cost and Active Control of Radiation of Wearable Medical Health Device for Wireless Body Area Network.
    Jin Y
    J Med Syst; 2019 Apr; 43(5):137. PubMed ID: 30963291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wireless Wearables and Implants: A Dosimetry Review.
    Guido K; Kiourti A
    Bioelectromagnetics; 2020 Jan; 41(1):3-20. PubMed ID: 31854006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Simulation Platform to Study the Human Body Communication Channel.
    Krhac K; Sayrafian K; Noetscher G; Simunic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4040-4043. PubMed ID: 31946758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A statistical frame based TDMA protocol for human body communication.
    Nie Z; Li Z; Huang R; Liu Y; Li J; Wang L
    Biomed Eng Online; 2015 Jul; 14():65. PubMed ID: 26155949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal Design of Switchable Wearable Antenna Array for Wireless Sensor Networks.
    Januszkiewicz Ł; Di Barba P; Hausman S
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32423090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a Secure Thermal-Energy Aware Routing Protocol in Wireless Body Area Network Based on Blockchain Technology.
    Shahbazi Z; Byun YC
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32604851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.