These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34010381)

  • 1. Role of conformational heterogeneity in ligand recognition by viral RNA molecules.
    Levintov L; Vashisth H
    Phys Chem Chem Phys; 2021 May; 23(19):11211-11223. PubMed ID: 34010381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HIV-1 TAR RNA spontaneously undergoes relevant apo-to-holo conformational transitions in molecular dynamics and constrained geometrical simulations.
    Fulle S; Christ NA; Kestner E; Gohlke H
    J Chem Inf Model; 2010 Aug; 50(8):1489-501. PubMed ID: 20726603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Cyclic Mimic of HIV Tat Differentiates Similar TAR RNAs on the Basis of Distinct Dynamic Behaviors.
    Lu J; Nguyen L; Zhao L; Xia T; Qi X
    Biochemistry; 2015 Jun; 54(23):3687-93. PubMed ID: 26016940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of HIV-1 TAR RNA-ligand complexes.
    Mitrasinovic PM; Tomar JS; Nair MS; Barthwal R
    Med Chem; 2011 Jul; 7(4):301-8. PubMed ID: 21574948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct conformational transition patterns of noncoding 7SK snRNA and HIV TAR RNAs upon Tat binding.
    Lu J; Wong V; Zhang Y; Tran T; Zhao L; Xia A; Xia T; Qi X
    Biochemistry; 2014 Feb; 53(4):675-81. PubMed ID: 24422492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How binding of small molecule and peptide ligands to HIV-1 TAR alters the RNA motional landscape.
    Bardaro MF; Shajani Z; Patora-Komisarska K; Robinson JA; Varani G
    Nucleic Acids Res; 2009 Apr; 37(5):1529-40. PubMed ID: 19139066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand Recognition in Viral RNA Necessitates Rare Conformational Transitions.
    Levintov L; Vashisth H
    J Phys Chem Lett; 2020 Jul; 11(14):5426-5432. PubMed ID: 32551654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of the human immunodeficiency virus type-1 TAR RNA reveals principles of RNA recognition by Tat protein.
    Aboul-ela F; Karn J; Varani G
    J Mol Biol; 1995 Oct; 253(2):313-32. PubMed ID: 7563092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic ensemble view of the conformational landscape of HIV-1 TAR RNA and allosteric recognition.
    Lu J; Kadakkuzha BM; Zhao L; Fan M; Qi X; Xia T
    Biochemistry; 2011 Jun; 50(22):5042-57. PubMed ID: 21553929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interactions and recognition of cyclic peptide mimetics of Tat with HIV-1 TAR RNA: a molecular dynamics simulation study.
    Li CH; Zuo ZC; Su JG; Xu XJ; Wang CX
    J Biomol Struct Dyn; 2013 Mar; 31(3):276-87. PubMed ID: 22943434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of ligands for RNA targets via structure-based virtual screening: HIV-1 TAR.
    Filikov AV; Mohan V; Vickers TA; Griffey RH; Cook PD; Abagyan RA; James TL
    J Comput Aided Mol Des; 2000 Aug; 14(6):593-610. PubMed ID: 10921774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence correlation spectroscopy at single molecule level on the Tat-TAR complex and its inhibitors.
    Nandi CK; Parui PP; Brutschy B; Scheffer U; Göbel M
    Biopolymers; 2008 Jan; 89(1):17-25. PubMed ID: 17764074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constructing RNA dynamical ensembles by combining MD and motionally decoupled NMR RDCs: new insights into RNA dynamics and adaptive ligand recognition.
    Frank AT; Stelzer AC; Al-Hashimi HM; Andricioaei I
    Nucleic Acids Res; 2009 Jun; 37(11):3670-9. PubMed ID: 19369218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tertiary Element Interaction in HIV-1 TAR.
    Krawczyk K; Sim AY; Knapp B; Deane CM; Minary P
    J Chem Inf Model; 2016 Sep; 56(9):1746-54. PubMed ID: 27500460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing Na(+)-induced changes in the HIV-1 TAR conformational dynamics using NMR residual dipolar couplings: new insights into the role of counterions and electrostatic interactions in adaptive recognition.
    Casiano-Negroni A; Sun X; Al-Hashimi HM
    Biochemistry; 2007 Jun; 46(22):6525-35. PubMed ID: 17488097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D structure stability of the HIV-1 TAR RNA in ion solutions: A coarse-grained model study.
    Zhang BG; Qiu HH; Jiang J; Liu J; Shi YZ
    J Chem Phys; 2019 Oct; 151(16):165101. PubMed ID: 31675878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering structure-activity relationships in a series of Tat/TAR inhibitors.
    Pascale L; González AL; Di Giorgio A; Gaysinski M; Teixido Closa J; Tejedor RE; Azoulay S; Patino N
    J Biomol Struct Dyn; 2016 Nov; 34(11):2327-38. PubMed ID: 26524629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Argininamide binding arrests global motions in HIV-1 TAR RNA: comparison with Mg2+-induced conformational stabilization.
    Pitt SW; Majumdar A; Serganov A; Patel DJ; Al-Hashimi HM
    J Mol Biol; 2004 Apr; 338(1):7-16. PubMed ID: 15050819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA conformation in the Tat-TAR complex determined by site-specific photo-cross-linking.
    Wang Z; Rana TM
    Biochemistry; 1996 May; 35(20):6491-9. PubMed ID: 8639596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved nucleotides in the TAR RNA stem of human immunodeficiency virus type 1 are critical for Tat binding and trans activation: model for TAR RNA tertiary structure.
    Delling U; Reid LS; Barnett RW; Ma MY; Climie S; Sumner-Smith M; Sonenberg N
    J Virol; 1992 May; 66(5):3018-25. PubMed ID: 1560535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.