These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34010561)

  • 1. Relatively Independent Motion of a Continuous Nanocellulose Network in a Polymer Matrix.
    Li K; Wang Y; Chen X; Bin S; Liu Y
    Biomacromolecules; 2021 Jun; 22(6):2684-2692. PubMed ID: 34010561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface.
    Benhamou K; Kaddami H; Magnin A; Dufresne A; Ahmad A
    Carbohydr Polym; 2015 May; 122():202-11. PubMed ID: 25817660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose Nanocrystals vs. Cellulose Nanofibers: A Comparative Study of Reinforcing Effects in UV-Cured Vegetable Oil Nanocomposites.
    Barkane A; Kampe E; Platnieks O; Gaidukovs S
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Strength, High-Toughness Aligned Polymer-Based Nanocomposite Reinforced with Ultralow Weight Fraction of Functionalized Nanocellulose.
    Geng S; Yao K; Zhou Q; Oksman K
    Biomacromolecules; 2018 Oct; 19(10):4075-4083. PubMed ID: 30130395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Nanocellulose Composites with Polymers: A Guide for Choosing Partners and How to Incorporate Them.
    Chakrabarty A; Teramoto Y
    Polymers (Basel); 2018 May; 10(5):. PubMed ID: 30966551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents.
    Xu X; Liu F; Jiang L; Zhu JY; Haagenson D; Wiesenborn DP
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2999-3009. PubMed ID: 23521616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
    Bharadwaz A; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Softening and Toughening Strategies of Cellulose Nanofibril Nanocomposites Using Comb Polyurethane.
    Aoki D; Lossada F; Hoenders D; Ajiro H; Walther A
    Biomacromolecules; 2022 Apr; 23(4):1693-1702. PubMed ID: 35362317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization.
    Thomas MG; Abraham E; Jyotishkumar P; Maria HJ; Pothen LA; Thomas S
    Int J Biol Macromol; 2015 Nov; 81():768-77. PubMed ID: 26318667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose nanocrystals enabled sustainable polycaprolactone based shape memory polyurethane bionanocomposites.
    Gupta A; Mekonnen TH
    J Colloid Interface Sci; 2022 Apr; 611():726-738. PubMed ID: 34876266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile dispersion strategy to prepare polylactic acid/reed straw nanofiber composites with enhanced mechanical and thermal properties.
    Wang H; Liu X; Liu J; Wu M; Huang Y
    Int J Biol Macromol; 2022 Nov; 221():278-287. PubMed ID: 36030979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyurethane nanocomposites incorporating biobased polyols and reinforced with a low fraction of cellulose nanocrystals.
    Kong X; Zhao L; Curtis JM
    Carbohydr Polym; 2016 Nov; 152():487-495. PubMed ID: 27516296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanocellulose composites with enhanced interfacial compatibility and mechanical properties using a hybrid-toughened epoxy matrix.
    Kuo PY; Barros LA; Yan N; Sain M; Qing Y; Wu Y
    Carbohydr Polym; 2017 Dec; 177():249-257. PubMed ID: 28962766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile method for stiff, tough, and strong nanocomposites by direct exfoliation of multilayered graphene into native nanocellulose matrix.
    Malho JM; Laaksonen P; Walther A; Ikkala O; Linder MB
    Biomacromolecules; 2012 Apr; 13(4):1093-9. PubMed ID: 22372697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose.
    Lee KY; Tammelin T; Schulfter K; Kiiskinen H; Samela J; Bismarck A
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4078-86. PubMed ID: 22839594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocellulose Xerogel as Template for Transparent, Thick, Flame-Retardant Polymer Nanocomposites.
    Sakuma W; Fujisawa S; Berglund LA; Saito T
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Semistructural Cellulose Nanocomposites: The Need for Scalable Processing and Interface Tailoring.
    Ansari F; Berglund LA
    Biomacromolecules; 2018 Jul; 19(7):2341-2350. PubMed ID: 29577729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Nanoporous Cellulose Gels as a Flexible Reinforcement Matrix for Polymer Nanocomposites.
    Shi Z; Huang J; Liu C; Ding B; Kuga S; Cai J; Zhang L
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):22990-8. PubMed ID: 26397710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Route to Transparent, Strong, and Thermally Stable Nanocellulose/Polymer Nanocomposites from an Aqueous Pickering Emulsion.
    Fujisawa S; Togawa E; Kuroda K
    Biomacromolecules; 2017 Jan; 18(1):266-271. PubMed ID: 27958712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesion and Stability of Nanocellulose Coatings on Flat Polymer Films and Textiles.
    Saremi R; Borodinov N; Laradji AM; Sharma S; Luzinov I; Minko S
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.