These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 34010737)

  • 1. A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants.
    Lenka SP; Kah M; Padhye LP
    Water Res; 2021 Jul; 199():117187. PubMed ID: 34010737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence and fate of poly- and perfluoroalkyl substances (PFAS) in urban waters of New Zealand.
    Lenka SP; Kah M; Padhye LP
    J Hazard Mater; 2022 Apr; 428():128257. PubMed ID: 35063834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence and removal of poly/perfluoroalkyl substances (PFAS) in municipal and industrial wastewater treatment plants.
    Barisci S; Suri R
    Water Sci Technol; 2021 Dec; 84(12):3442-3468. PubMed ID: 34928819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occurrence of quantifiable and semi-quantifiable poly- and perfluoroalkyl substances in united states wastewater treatment plants.
    Schaefer CE; Hooper JL; Strom LE; Abusallout I; Dickenson ERV; Thompson KA; Mohan GR; Drennan D; Wu K; Guelfo JL
    Water Res; 2023 Apr; 233():119724. PubMed ID: 36801573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sources, occurrence, and treatment techniques of per- and polyfluoroalkyl substances in aqueous matrices: A comprehensive review.
    Saawarn B; Mahanty B; Hait S; Hussain S
    Environ Res; 2022 Nov; 214(Pt 4):114004. PubMed ID: 35970375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nontarget Screening and Fate of Emerging Per- and Polyfluoroalkyl Substances in Wastewater Treatment Plants in Tianjin, China.
    Qiao B; Song D; Fang B; Yu H; Li X; Zhao L; Yao Y; Zhu L; Chen H; Sun H
    Environ Sci Technol; 2023 Dec; 57(48):20127-20137. PubMed ID: 37800548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass flow of per- and polyfluoroalkyl substances (PFAS) in a Swedish municipal wastewater network and wastewater treatment plant.
    Gobelius L; Glimstedt L; Olsson J; Wiberg K; Ahrens L
    Chemosphere; 2023 Sep; 336():139182. PubMed ID: 37302497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occurrence of per- and polyfluorinated alkyl substances in wastewater treatment plants in Northern Italy.
    Moneta BG; Feo ML; Torre M; Tratzi P; Aita SE; Montone CM; Taglioni E; Mosca S; Balducci C; Cerasa M; Guerriero E; Petracchini F; Cavaliere C; Laganà A; Paolini V
    Sci Total Environ; 2023 Oct; 894():165089. PubMed ID: 37355117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive profiles of per- and polyfluoroalkyl substances in Chinese and African municipal wastewater treatment plants: New implications for removal efficiency.
    Jiang L; Yao J; Ren G; Sheng N; Guo Y; Dai J; Pan Y
    Sci Total Environ; 2023 Jan; 857(Pt 3):159638. PubMed ID: 36280053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The significance of fluorinated compound chain length, treatment technology, and influent composition on per- and polyfluoroalkyl substances removal in worldwide wastewater treatment plants.
    Ilieva Z; Hamza RA; Suehring R
    Integr Environ Assess Manag; 2024 Jan; 20(1):59-69. PubMed ID: 37096563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence, fate and ecological risks of 90 typical emerging contaminants in full-scale textile wastewater treatment plants from a large industrial park in Guangxi, Southwest China.
    Liu SS; You WD; Chen CE; Wang XY; Yang B; Ying GG
    J Hazard Mater; 2023 May; 449():131048. PubMed ID: 36821905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Per- and polyfluoroalkyl substances (PFAS) in Canadian municipal wastewater and biosolids: Recent patterns and time trends 2009 to 2021.
    Gewurtz SB; Auyeung AS; De Silva AO; Teslic S; Smyth SA
    Sci Total Environ; 2024 Feb; 912():168638. PubMed ID: 37984658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosolids, an important route for transporting poly- and perfluoroalkyl substances from wastewater treatment plants into the environment: A systematic review.
    Behnami A; Zoroufchi Benis K; Pourakbar M; Yeganeh M; Esrafili A; Gholami M
    Sci Total Environ; 2024 May; 925():171559. PubMed ID: 38458438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution and fate of perfluoroalkyl substances in municipal wastewater treatment plants in economically developed areas of China.
    Zhang W; Zhang Y; Taniyasu S; Yeung LW; Lam PK; Wang J; Li X; Yamashita N; Dai J
    Environ Pollut; 2013 May; 176():10-7. PubMed ID: 23410673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Per- and polyfluoroalkyl substances (PFAS) in sludge from wastewater treatment plants in Sweden - First findings of novel fluorinated copolymers in Europe including temporal analysis.
    Fredriksson F; Eriksson U; Kärrman A; Yeung LWY
    Sci Total Environ; 2022 Nov; 846():157406. PubMed ID: 35850346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: Removal efficiency and exposure risk.
    Pan CG; Liu YS; Ying GG
    Water Res; 2016 Dec; 106():562-570. PubMed ID: 27776305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perfluoroalkyl compounds in municipal WWTPs in Tianjin, China--concentrations, distribution and mass flow.
    Sun H; Zhang X; Wang L; Zhang T; Li F; He N; Alder AC
    Environ Sci Pollut Res Int; 2012 Jun; 19(5):1405-15. PubMed ID: 22743990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Which type of pollutants need to be controlled with priority in wastewater treatment plants: Traditional or emerging pollutants?
    Zhou Y; Meng J; Zhang M; Chen S; He B; Zhao H; Li Q; Zhang S; Wang T
    Environ Int; 2019 Oct; 131():104982. PubMed ID: 31299603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence and fate of perfluorinated acids in two wastewater treatment plants in Shanghai, China.
    Zhang C; Yan H; Li F; Zhou Q
    Environ Sci Pollut Res Int; 2015 Feb; 22(3):1804-11. PubMed ID: 23933955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal and annual variations in removal efficiency of perfluoroalkyl substances by different wastewater treatment processes.
    Chen S; Zhou Y; Meng J; Wang T
    Environ Pollut; 2018 Nov; 242(Pt B):2059-2067. PubMed ID: 30231460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.