These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 34010737)

  • 81. HPLC-MS/MS methods for the determination of 52 perfluoroalkyl and polyfluoroalkyl substances in aqueous samples.
    Gremmel C; Frömel T; Knepper TP
    Anal Bioanal Chem; 2017 Feb; 409(6):1643-1655. PubMed ID: 27928608
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Temporal trends of perfluoroalkyl substances in an Australian wastewater treatment plant: A ten-year retrospective investigation.
    Gallen C; Bignert A; Taucare G; O'Brien J; Braeunig J; Reeks T; Thompson J; Mueller JF
    Sci Total Environ; 2022 Jan; 804():150211. PubMed ID: 34798742
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Perfluoroalkyl substances and pharmaceuticals removal in full-scale drinking water treatment plants.
    Kim KY; Ekpe OD; Lee HJ; Oh JE
    J Hazard Mater; 2020 Dec; 400():123235. PubMed ID: 32947684
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A juxtaposed review on adsorptive removal of PFAS by metal-organic frameworks (MOFs) with carbon-based materials, ion exchange resins, and polymer adsorbents.
    Karbassiyazdi E; Kasula M; Modak S; Pala J; Kalantari M; Altaee A; Esfahani MR; Razmjou A
    Chemosphere; 2023 Jan; 311(Pt 1):136933. PubMed ID: 36280122
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Occurrence, fate and risk assessment of androgens in ten wastewater treatment plants and receiving rivers of South China.
    Zhang JN; Ying GG; Yang YY; Liu WR; Liu SS; Chen J; Liu YS; Zhao JL; Zhang QQ
    Chemosphere; 2018 Jun; 201():644-654. PubMed ID: 29547853
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Electrochemical oxidation processes for PFAS removal from contaminated water and wastewater: fundamentals, gaps and opportunities towards practical implementation.
    Veciana M; Bräunig J; Farhat A; Pype ML; Freguia S; Carvalho G; Keller J; Ledezma P
    J Hazard Mater; 2022 Jul; 434():128886. PubMed ID: 35436757
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Perfluoroalkyl sulfonates and perfluorocarboxylates in two wastewater treatment facilities in Kentucky and Georgia.
    Loganathan BG; Sajwan KS; Sinclair E; Senthil Kumar K; Kannan K
    Water Res; 2007 Dec; 41(20):4611-20. PubMed ID: 17632203
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Occurrence and removal of progestagens in municipal wastewater treatment plants from different regions in China.
    Yu Q; Geng J; Zong X; Zhang Y; Xu K; Hu H; Deng Y; Zhao F; Ren H
    Sci Total Environ; 2019 Jun; 668():1191-1199. PubMed ID: 31018459
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Poly- and Perfluoroalkyl Substances in Runoff Water and Wastewater Sampled at a Firefighter Training Area.
    Dauchy X; Boiteux V; Colin A; Bach C; Rosin C; Munoz JF
    Arch Environ Contam Toxicol; 2019 Feb; 76(2):206-215. PubMed ID: 30515647
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Removal of 48 per- and polyfluoroalkyl substances (PFAS) throughout processes in domestic and general industrial wastewater treatment plants: Implications for emerging alternatives risk control.
    Zhang Y; Dong R; Ge F; Hong M; Chen Z; Zhou Y; Wei J; Gu C; Kong D
    J Hazard Mater; 2024 Dec; 480():136130. PubMed ID: 39405718
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Removal of perfluoalkyl acids (PFAAs) through fluorochemical industrial and domestic wastewater treatment plants and bioaccumulation in aquatic plants in river and artificial wetland.
    Wang P; Zhang M; Lu Y; Meng J; Li Q; Lu X
    Environ Int; 2019 Aug; 129():76-85. PubMed ID: 31121518
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A review of PFAS adsorption from aqueous solutions: Current approaches, engineering applications, challenges, and opportunities.
    Lei X; Lian Q; Zhang X; Karsili TK; Holmes W; Chen Y; Zappi ME; Gang DD
    Environ Pollut; 2023 Mar; 321():121138. PubMed ID: 36702432
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Elucidation of contamination sources for poly- and perfluoroalkyl substances (PFASs) on Svalbard (Norwegian Arctic).
    Skaar JS; Ræder EM; Lyche JL; Ahrens L; Kallenborn R
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):7356-7363. PubMed ID: 29754295
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Fate of typical endocrine active compounds in full-scale wastewater treatment plants: Distribution, removal efficiency and potential risks.
    Cao J; Fu B; Zhang T; Wu Y; Zhou Z; Zhao J; Yang E; Qian T; Luo J
    Bioresour Technol; 2020 Aug; 310():123436. PubMed ID: 32353771
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Evaluation of the fate of perfluoroalkyl compounds in wastewater treatment plants.
    Guo R; Sim WJ; Lee ES; Lee JH; Oh JE
    Water Res; 2010 Jun; 44(11):3476-86. PubMed ID: 20417541
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Data on occurrence of perfluoroalkyl substances in influents and effluents collected from different wastewater treatment plants in Latvia.
    Zacs D; Pasecnaja E; Bartkevics V
    Data Brief; 2022 Jun; 42():108228. PubMed ID: 35572800
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Environmental fate and transport of PFAS in wastewater treatment plant effluent discharged to rapid infiltration basins.
    Trobisch KM; Reeves DM; Cassidy DP
    Water Res; 2024 Nov; 266():122422. PubMed ID: 39276479
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Per- and poly-fluoroalkyl substances in agricultural contexts and mitigation of their impacts using biochar: A review.
    Ramos P; Ashworth DJ
    Sci Total Environ; 2024 Jun; 927():172275. PubMed ID: 38583608
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Evaluation of the efficiency of selected wastewater treatment processes in removing selected perfluoroalkyl substances (PFASs).
    Kibambe MG; Momba MNB; Daso AP; Coetzee MAA
    J Environ Manage; 2020 Feb; 255():109945. PubMed ID: 32063313
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Occurrence and fate of emerging trace organic chemicals in wastewater plants in Chennai, India.
    Anumol T; Vijayanandan A; Park M; Philip L; Snyder SA
    Environ Int; 2016; 92-93():33-42. PubMed ID: 27054837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.