These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34010767)

  • 21. Changes across time in spike rate and spike amplitude of auditory nerve fibers stimulated by electric pulse trains.
    Zhang F; Miller CA; Robinson BK; Abbas PJ; Hu N
    J Assoc Res Otolaryngol; 2007 Sep; 8(3):356-72. PubMed ID: 17562109
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations.
    Wu JS; Young ED; Glowatzki E
    J Neurosci; 2016 Oct; 36(41):10584-10597. PubMed ID: 27733610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Encoding of amplitude modulation in the cochlear nucleus of the cat.
    Rhode WS; Greenberg S
    J Neurophysiol; 1994 May; 71(5):1797-825. PubMed ID: 8064349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multidimensional stimulus encoding in the auditory nerve of the barn owl.
    Fischer BJ; Wydick JL; Köppl C; Peña JL
    J Acoust Soc Am; 2018 Oct; 144(4):2116. PubMed ID: 30404459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recovery of auditory-nerve-fiber spike amplitude under natural excitation conditions.
    Peterson AJ; Huet A; Bourien J; Puel JL; Heil P
    Hear Res; 2018 Dec; 370():248-263. PubMed ID: 30177426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The dependence of auditory nerve rate adaptation on electric stimulus parameters, electrode position, and fiber diameter: a computer model study.
    Woo J; Miller CA; Abbas PJ
    J Assoc Res Otolaryngol; 2010 Jun; 11(2):283-96. PubMed ID: 20033248
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phenomenological modelling of electrically stimulated auditory nerve fibers: A review.
    Takanen M; Bruce IC; Seeber BU
    Network; 2016; 27(2-3):157-185. PubMed ID: 27573993
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The representations of the steady-state vowel sound /e/ in the discharge patterns of cat anteroventral cochlear nucleus neurons.
    Blackburn CC; Sachs MB
    J Neurophysiol; 1990 May; 63(5):1191-212. PubMed ID: 2358869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sound Coding in the Auditory Nerve: From Single Fiber Activity to Cochlear Mass Potentials in Gerbils.
    Huet A; Batrel C; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    Neuroscience; 2019 May; 407():83-92. PubMed ID: 30342201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contribution of auditory nerve fibers to compound action potential of the auditory nerve.
    Bourien J; Tang Y; Batrel C; Huet A; Lenoir M; Ladrech S; Desmadryl G; Nouvian R; Puel JL; Wang J
    J Neurophysiol; 2014 Sep; 112(5):1025-39. PubMed ID: 24848461
    [TBL] [Abstract][Full Text] [Related]  

  • 31. First-spike timing of auditory-nerve fibers and comparison with auditory cortex.
    Heil P; Irvine DR
    J Neurophysiol; 1997 Nov; 78(5):2438-54. PubMed ID: 9356395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers.
    Peterson AJ; Irvine DR; Heil P
    J Neurosci; 2014 Nov; 34(45):15097-109. PubMed ID: 25378173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stochastic properties of cat auditory nerve responses to electric and acoustic stimuli and application to intensity discrimination.
    Javel E; Viemeister NF
    J Acoust Soc Am; 2000 Feb; 107(2):908-21. PubMed ID: 10687700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Auditory-nerve responses in mice with noise-induced cochlear synaptopathy.
    Suthakar K; Liberman MC
    J Neurophysiol; 2021 Dec; 126(6):2027-2038. PubMed ID: 34788179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. I. Intensity dependence of firing rate and response latency.
    Raggio MW; Schreiner CE
    J Neurophysiol; 1994 Nov; 72(5):2334-59. PubMed ID: 7884463
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A phenomenological model of the synapse between the inner hair cell and auditory nerve: Implications of limited neurotransmitter release sites.
    Bruce IC; Erfani Y; Zilany MSA
    Hear Res; 2018 Mar; 360():40-54. PubMed ID: 29395616
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coding of spectral fine structure in the auditory nerve. II: Level-dependent nonlinear responses.
    Horst JW; Javel E; Farley GR
    J Acoust Soc Am; 1990 Dec; 88(6):2656-81. PubMed ID: 2283439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Encoding timing and intensity in the ventral cochlear nucleus of the cat.
    Rhode WS; Smith PH
    J Neurophysiol; 1986 Aug; 56(2):261-86. PubMed ID: 3760921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coding of sound pressure level in the barn owl's auditory nerve.
    Köppl C; Yates G
    J Neurosci; 1999 Nov; 19(21):9674-86. PubMed ID: 10531469
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling binaural responses in the auditory brainstem to electric stimulation of the auditory nerve.
    Chung Y; Delgutte B; Colburn HS
    J Assoc Res Otolaryngol; 2015 Feb; 16(1):135-58. PubMed ID: 25348578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.