These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34010795)

  • 1. A new convolutional neural network predictive model for the automatic recognition of hypogranulated neutrophils in myelodysplastic syndromes.
    Acevedo A; Merino A; Boldú L; Molina Á; Alférez S; Rodellar J
    Comput Biol Med; 2021 Jul; 134():104479. PubMed ID: 34010795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning approach for automatic recognition of abnormalities in the cytoplasm of neutrophils.
    Barrera K; Rodellar J; Alférez S; Merino A
    Comput Biol Med; 2024 Aug; 178():108691. PubMed ID: 38905894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inter-observer variance and the need for standardization in the morphological classification of myelodysplastic syndrome.
    Sasada K; Yamamoto N; Masuda H; Tanaka Y; Ishihara A; Takamatsu Y; Yatomi Y; Katsuda W; Sato I; Matsui H;
    Leuk Res; 2018 Jun; 69():54-59. PubMed ID: 29656215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel automated image analysis system using deep convolutional neural networks can assist to differentiate MDS and AA.
    Kimura K; Tabe Y; Ai T; Takehara I; Fukuda H; Takahashi H; Naito T; Komatsu N; Uchihashi K; Ohsaka A
    Sci Rep; 2019 Sep; 9(1):13385. PubMed ID: 31527646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of peripheral blood cell images using convolutional neural networks.
    Acevedo A; Alférez S; Merino A; Puigví L; Rodellar J
    Comput Methods Programs Biomed; 2019 Oct; 180():105020. PubMed ID: 31425939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning-based improvement of MDS-CBC score brings platelets into the limelight to optimize smear review in the hematology laboratory.
    Zhu J; Lemaire P; Mathis S; Ronez E; Clauser S; Jondeau K; Fenaux P; Adès L; Bardet V
    BMC Cancer; 2022 Sep; 22(1):972. PubMed ID: 36088307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Morphologic diagnosis of myelodysplastic syndromes].
    Matsuda A
    Rinsho Ketsueki; 2017; 58(4):336-346. PubMed ID: 28484164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. White blood cells detection and classification based on regional convolutional neural networks.
    Kutlu H; Avci E; Özyurt F
    Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of dysplasia in bone marrow smear with convolutional neural network.
    Mori J; Kaji S; Kawai H; Kida S; Tsubokura M; Fukatsu M; Harada K; Noji H; Ikezoe T; Maeda T; Matsuda A
    Sci Rep; 2020 Sep; 10(1):14734. PubMed ID: 32895431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnostic significance of dysplastic features of peripheral blood polymorphs in myelodysplastic syndromes.
    Hast R; Nilsson I; Widell S; Ost A
    Leuk Res; 1989; 13(2):173-8. PubMed ID: 2927174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutrophil dysplasia is not a specific feature of the abnormal chromosomal clone in myelodysplastic syndromes.
    Hast R; Eriksson M; Widell S; Arvidsson I; Bemell P
    Leuk Res; 1999 Jun; 23(6):579-84. PubMed ID: 10374851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripheral blood MDS score: a new flow cytometric tool for the diagnosis of myelodysplastic syndromes.
    Cherian S; Moore J; Bantly A; Vergilio JA; Klein P; Luger S; Bagg A
    Cytometry B Clin Cytom; 2005 Mar; 64(1):9-17. PubMed ID: 15668954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning-Based Nuclear Lobe Count Method for Differential Count of Neutrophils.
    Yabuta M; Nakamura I; Ida H; Masauzi H; Okada K; Kaga S; Miwa K; Masauzi N
    Tohoku J Exp Med; 2021 Jul; 254(3):199-206. PubMed ID: 34305101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic Identification of Down Syndrome Using Facial Images with Deep Convolutional Neural Network.
    Qin B; Liang L; Wu J; Quan Q; Wang Z; Li D
    Diagnostics (Basel); 2020 Jul; 10(7):. PubMed ID: 32709157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep learning model (ALNet) for the diagnosis of acute leukaemia lineage using peripheral blood cell images.
    Boldú L; Merino A; Acevedo A; Molina A; Rodellar J
    Comput Methods Programs Biomed; 2021 Apr; 202():105999. PubMed ID: 33618145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow cytometric analysis of peripheral blood neutrophil myeloperoxidase expression for ruling out myelodysplastic syndromes: a prospective validation study.
    Raskovalova T; Jacob MC; Bulabois CE; Mariette C; Scheffen L; Park S; Labarère J
    Ann Hematol; 2021 May; 100(5):1149-1158. PubMed ID: 33569703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of adequate recognition of normal and dysplastic myelopoiesis for the diagnosis of myelodysplastic syndromes.
    Florensa L; Arenillas L; Calvo X; Pérez-Vila E; Montesdeoca S; Ferrer A; Woessner S
    Histol Histopathol; 2019 Aug; 34(8):857-873. PubMed ID: 30779051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of peripheral blood neutrophils using deep learning.
    Tseng TR; Huang HM
    Cytometry A; 2023 Apr; 103(4):295-303. PubMed ID: 36268593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proposal for refining the definition of dysgranulopoiesis in acute myeloid leukemia and myelodysplastic syndromes.
    Goasguen JE; Bennett JM; Bain BJ; Brunning R; Vallespi MT; Tomonaga M; Zini G; Renault A;
    Leuk Res; 2014 Apr; 38(4):447-53. PubMed ID: 24439566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.