BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34010985)

  • 1. Canine induced pluripotent stem cell maintenance under feeder-free and chemically-defined conditions.
    Kimura K; Tsukamoto M; Yoshida T; Tanaka M; Kuwamura M; Ohtaka M; Nishimura K; Nakanishi M; Sugiura K; Hatoya S
    Mol Reprod Dev; 2021 Jun; 88(6):395-404. PubMed ID: 34010985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Reprogramming of Canine Peripheral Blood Mononuclear Cells into Induced Pluripotent Stem Cells.
    Kimura K; Tsukamoto M; Tanaka M; Kuwamura M; Ohtaka M; Nishimura K; Nakanishi M; Sugiura K; Hatoya S
    Stem Cells Dev; 2021 Jan; 30(2):79-90. PubMed ID: 33256572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Canine induced pluripotent stem cells can be successfully maintained in weekend-free culture systems.
    Kimura K; Nagakura H; Tsukamoto M; Yoshida T; Sugisaki H; Shishida K; Tachi Y; Shimasaki S; Sugiura K; Hatoya S
    J Vet Med Sci; 2024 Mar; 86(3):247-257. PubMed ID: 38171744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positioning canine induced pluripotent stem cells (iPSCs) in the reprogramming landscape of naïve or primed state in comparison to mouse and human iPSCs.
    Menon DV; Bhaskar S; Sheshadri P; Joshi CG; Patel D; Kumar A
    Life Sci; 2021 Jan; 264():118701. PubMed ID: 33130086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feeder-independent canine induced pluripotent stem cells maintained under serum-free conditions.
    Nishimura T; Hatoya S; Kanegi R; Wijesekera DPH; Sanno K; Tanaka E; Sugiura K; Hiromitsu Tamada NK; Imai H; Inaba T
    Mol Reprod Dev; 2017 Apr; 84(4):329-339. PubMed ID: 28240438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pluripotent Conversion of Muscle Stem Cells Without Reprogramming Factors or Small Molecules.
    Bose B; Shenoy P S
    Stem Cell Rev Rep; 2016 Feb; 12(1):73-89. PubMed ID: 26358783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of Footprint-Free Canine Induced Pluripotent Stem Cells Using Auto-Erasable Sendai Virus Vector.
    Tsukamoto M; Nishimura T; Yodoe K; Kanegi R; Tsujimoto Y; Alam ME; Kuramochi M; Kuwamura M; Ohtaka M; Nishimura K; Nakanishi M; Inaba T; Sugiura K; Hatoya S
    Stem Cells Dev; 2018 Nov; 27(22):1577-1586. PubMed ID: 30215317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation and characterization of LIF-dependent canine induced pluripotent stem cells from adult dermal fibroblasts.
    Whitworth DJ; Ovchinnikov DA; Wolvetang EJ
    Stem Cells Dev; 2012 Aug; 21(12):2288-97. PubMed ID: 22221227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of leukemia inhibitory factor and basic fibroblast growth factor-dependent induced pluripotent stem cells from canine adult somatic cells.
    Luo J; Suhr ST; Chang EA; Wang K; Ross PJ; Nelson LL; Venta PJ; Knott JG; Cibelli JB
    Stem Cells Dev; 2011 Oct; 20(10):1669-78. PubMed ID: 21495906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and evaluation of a novel xeno-free culture medium for human-induced pluripotent stem cells.
    Hua Y; Yoshimochi K; Li J; Takekita K; Shimotsuma M; Li L; Qu X; Zhang J; Sawa Y; Liu L; Miyagawa S
    Stem Cell Res Ther; 2022 Jun; 13(1):223. PubMed ID: 35658933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of canine induced pluripotent stem cells under feeder-free conditions using Sendai virus vector encoding six canine reprogramming factors.
    Tsukamoto M; Kimura K; Yoshida T; Tanaka M; Kuwamura M; Ayabe T; Ishihara G; Watanabe K; Okada M; Iijima M; Nakanishi M; Akutsu H; Sugiura K; Hatoya S
    Stem Cell Reports; 2024 Jan; 19(1):141-157. PubMed ID: 38134923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preclinical derivation and imaging of autologously transplanted canine induced pluripotent stem cells.
    Lee AS; Xu D; Plews JR; Nguyen PK; Nag D; Lyons JK; Han L; Hu S; Lan F; Liu J; Huang M; Narsinh KH; Long CT; de Almeida PE; Levi B; Kooreman N; Bangs C; Pacharinsak C; Ikeno F; Yeung AC; Gambhir SS; Robbins RC; Longaker MT; Wu JC
    J Biol Chem; 2011 Sep; 286(37):32697-704. PubMed ID: 21719696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Footprint-Free Canine Induced Pluripotent Stem Cells from Peripheral Blood Mononuclear Cells Using Sendai Virus Vector.
    Tsukamoto M; Kimura K; Tanaka M; Kuwamura M; Ohtaka M; Nakanishi M; Sugiura K; Hatoya S
    Mol Reprod Dev; 2020 Jun; 87(6):663-665. PubMed ID: 32424848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Generation of Non-Integration and Feeder-Free Induced Pluripotent Stem Cells from Human Peripheral Blood Cells by Sendai Virus.
    Ye H; Wang Q
    Cell Physiol Biochem; 2018; 50(4):1318-1331. PubMed ID: 30355953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of N-glycolylneuraminic acid in human induced pluripotent stem cells generated or cultured under feeder- and serum-free defined conditions.
    Hayashi Y; Chan T; Warashina M; Fukuda M; Ariizumi T; Okabayashi K; Takayama N; Otsu M; Eto K; Furue MK; Michiue T; Ohnuma K; Nakauchi H; Asashima M
    PLoS One; 2010 Nov; 5(11):e14099. PubMed ID: 21124894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth requirements and chromosomal instability of induced pluripotent stem cells generated from adult canine fibroblasts.
    Koh S; Thomas R; Tsai S; Bischoff S; Lim JH; Breen M; Olby NJ; Piedrahita JA
    Stem Cells Dev; 2013 Mar; 22(6):951-63. PubMed ID: 23016947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Xeno-Free Feeder-Layer System from Human Umbilical Cord Mesenchymal Stem Cells for Prolonged Expansion of Human Induced Pluripotent Stem Cells in Culture.
    Zou Q; Wu M; Zhong L; Fan Z; Zhang B; Chen Q; Ma F
    PLoS One; 2016; 11(2):e0149023. PubMed ID: 26882313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thin films of functionalized carbon nanotubes support long-term maintenance and cardio-neuronal differentiation of canine induced pluripotent stem cells.
    Mondal T; Das K; Singh P; Natarajan M; Manna B; Ghosh A; Singh P; Saha SK; Dhama K; Dutt T; Bag S
    Nanomedicine; 2022 Feb; 40():102487. PubMed ID: 34740869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust production of human neural cells by establishing neuroepithelial-like stem cells from peripheral blood mononuclear cell-derived feeder-free iPSCs under xeno-free conditions.
    Isoda M; Kohyama J; Iwanami A; Sanosaka T; Sugai K; Yamaguchi R; Matsumoto T; Nakamura M; Okano H
    Neurosci Res; 2016 Sep; 110():18-28. PubMed ID: 27083781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of human induced pluripotent stem (Ips) cells in serum- and feeder-free defined culture and TGF-Β1 regulation of pluripotency.
    Yamasaki S; Taguchi Y; Shimamoto A; Mukasa H; Tahara H; Okamoto T
    PLoS One; 2014; 9(1):e87151. PubMed ID: 24489856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.