BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34011164)

  • 1. Duraplasty in Traumatic Thoracic Spinal Cord Injury: Impact on Spinal Cord Hemodynamics, Tissue Metabolism, Histology, and Behavioral Recovery Using a Porcine Model.
    Streijger F; Kim KT; So K; Manouchehri N; Shortt K; Okon EB; Morrison C; Fong A; Gupta R; Allard Brown A; Tigchelaar S; Sun J; Liu E; Keung M; Daly CD; Cripton PA; Sekhon MS; Griesdale DE; Kwon BK
    J Neurotrauma; 2021 Nov; 38(21):2937-2955. PubMed ID: 34011164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of early surgical decompression on functional and histological outcomes after severe experimental thoracic spinal cord injury.
    Jalan D; Saini N; Zaidi M; Pallottie A; Elkabes S; Heary RF
    J Neurosurg Spine; 2017 Jan; 26(1):62-75. PubMed ID: 27636866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between Early Vasopressor Administration and Spinal Cord Hemorrhage in a Porcine Model of Acute Traumatic Spinal Cord Injury.
    Cheung A; Streijger F; So K; Okon EB; Manouchehri N; Shortt K; Kim KT; Keung MSM; Chan RM; Fong A; Sun J; Griesdale DE; Sehkon MS; Kwon BK
    J Neurotrauma; 2020 Aug; 37(15):1696-1707. PubMed ID: 32233727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in Morphometric Measures of the Uninjured Porcine Spinal Cord and Dural Sac Predict Histological and Behavioral Outcomes after Traumatic Spinal Cord Injury.
    Kim KT; Streijger F; So K; Manouchehri N; Shortt K; Okon EB; Tigchelaar S; Fong A; Morrison C; Keung M; Sun J; Liu E; Cripton PA; Kwon BK
    J Neurotrauma; 2019 Nov; 36(21):3005-3017. PubMed ID: 30816064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute, Severe Traumatic Spinal Cord Injury: Monitoring from the Injury Site and Expansion Duraplasty.
    Saadoun S; Papadopoulos MC
    Neurosurg Clin N Am; 2021 Jul; 32(3):365-376. PubMed ID: 34053724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous Optical Monitoring of Spinal Cord Oxygenation and Hemodynamics during the First Seven Days Post-Injury in a Porcine Model of Acute Spinal Cord Injury.
    Cheung A; Tu L; Manouchehri N; Kim KT; So K; Webster M; Fisk S; Tigchelaar S; Dalkilic SS; Sayre EC; Streijger F; Macnab A; Kwon BK; Shadgan B
    J Neurotrauma; 2020 Nov; 37(21):2292-2301. PubMed ID: 32689879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in Pressure, Hemodynamics, and Metabolism within the Spinal Cord during the First 7 Days after Injury Using a Porcine Model.
    Streijger F; So K; Manouchehri N; Tigchelaar S; Lee JHT; Okon EB; Shortt K; Kim SE; McInnes K; Cripton P; Kwon BK
    J Neurotrauma; 2017 Dec; 34(24):3336-3350. PubMed ID: 28844181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel porcine model of traumatic thoracic spinal cord injury.
    Lee JH; Jones CF; Okon EB; Anderson L; Tigchelaar S; Kooner P; Godbey T; Chua B; Gray G; Hildebrandt R; Cripton P; Tetzlaff W; Kwon BK
    J Neurotrauma; 2013 Feb; 30(3):142-59. PubMed ID: 23316955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Evaluation of Magnesium Chloride within a Polyethylene Glycol Formulation in a Porcine Model of Acute Spinal Cord Injury.
    Streijger F; Lee JH; Manouchehri N; Okon EB; Tigchelaar S; Anderson LM; Dekaban GA; Rudko DA; Menon RS; Iaci JF; Button DC; Vecchione AM; Konovalov A; Sarmiere PD; Ung C; Caggiano AO; Kwon BK
    J Neurotrauma; 2016 Dec; 33(24):2202-2216. PubMed ID: 27125815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A porcine model for studying the cardiovascular consequences of high-thoracic spinal cord injury.
    West CR; Poormasjedi-Meibod MS; Manouchehri N; Williams AM; Erskine EL; Webster M; Fisk S; Morrison C; Short K; So K; Cheung A; Streijger F; Kwon BK
    J Physiol; 2020 Mar; 598(5):929-942. PubMed ID: 31876952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of the Acutely Injured Spinal Cord to Vibration that Simulates Transport in Helicopters or Mine-Resistant Ambush-Protected Vehicles.
    Streijger F; Lee JH; Manouchehri N; Melnyk AD; Chak J; Tigchelaar S; So K; Okon EB; Jiang S; Kinsler R; Barazanji K; Cripton PA; Kwon BK
    J Neurotrauma; 2016 Dec; 33(24):2217-2226. PubMed ID: 27214588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does Decompressive Duraplasty Have a Neuroprotective Effect on Spinal Trauma?: An Experimental Study.
    Camlar M; Turk Ç; Buhur A; Oltulu F; Oren M; Senoglu M; Ozer F
    World Neurosurg; 2019 Jun; 126():e288-e294. PubMed ID: 30822587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gross morphological changes of the spinal cord immediately after surgical decompression in a large animal model of traumatic spinal cord injury.
    Jones CF; Cripton PA; Kwon BK
    Spine (Phila Pa 1976); 2012 Jul; 37(15):E890-9. PubMed ID: 22433504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dural repair reduces connective tissue scar invasion and cystic cavity formation after acute spinal cord laceration injury in adult rats.
    Iannotti C; Zhang YP; Shields LB; Han Y; Burke DA; Xu XM; Shields CB
    J Neurotrauma; 2006 Jun; 23(6):853-65. PubMed ID: 16774471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Direct Comparison between Norepinephrine and Phenylephrine for Augmenting Spinal Cord Perfusion in a Porcine Model of Spinal Cord Injury.
    Streijger F; So K; Manouchehri N; Gheorghe A; Okon EB; Chan RM; Ng B; Shortt K; Sekhon MS; Griesdale DE; Kwon BK
    J Neurotrauma; 2018 Jun; 35(12):1345-1357. PubMed ID: 29338544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardio-centric hemodynamic management improves spinal cord oxygenation and mitigates hemorrhage in acute spinal cord injury.
    Williams AM; Manouchehri N; Erskine E; Tauh K; So K; Shortt K; Webster M; Fisk S; Billingsley A; Munro A; Tigchelaar S; Streijger F; Kim KT; Kwon BK; West CR
    Nat Commun; 2020 Oct; 11(1):5209. PubMed ID: 33060602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of early surgical decompression of the intradural space after cervical spinal cord injury in an animal model.
    Smith JS; Anderson R; Pham T; Bhatia N; Steward O; Gupta R
    J Bone Joint Surg Am; 2010 May; 92(5):1206-14. PubMed ID: 20439667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nicotine attenuates morphological deficits in a contusion model of spinal cord injury.
    Ravikumar R; Fugaccia I; Scheff SW; Geddes JW; Srinivasan C; Toborek M
    J Neurotrauma; 2005 Feb; 22(2):240-51. PubMed ID: 15716630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a large-animal model to measure dynamic cerebrospinal fluid pressure during spinal cord injury: Laboratory investigation.
    Jones CF; Lee JH; Kwon BK; Cripton PA
    J Neurosurg Spine; 2012 Jun; 16(6):624-35. PubMed ID: 22519927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basic fibroblast growth factor (bFGF) enhances functional recovery following severe spinal cord injury to the rat.
    Rabchevsky AG; Fugaccia I; Turner AF; Blades DA; Mattson MP; Scheff SW
    Exp Neurol; 2000 Aug; 164(2):280-91. PubMed ID: 10915567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.