BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

486 related articles for article (PubMed ID: 34011687)

  • 1. SpRY Cas9 Can Utilize a Variety of Protospacer Adjacent Motif Site Sequences To Edit the Candida albicans Genome.
    Evans BA; Bernstein DA
    mSphere; 2021 May; 6(3):. PubMed ID: 34011687
    [No Abstract]   [Full Text] [Related]  

  • 2. PAM-less plant genome editing using a CRISPR-SpRY toolbox.
    Ren Q; Sretenovic S; Liu S; Tang X; Huang L; He Y; Liu L; Guo Y; Zhong Z; Liu G; Cheng Y; Zheng X; Pan C; Yin D; Zhang Y; Li W; Qi L; Li C; Qi Y; Zhang Y
    Nat Plants; 2021 Jan; 7(1):25-33. PubMed ID: 33398158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene editing of Duchenne muscular dystrophy using biomineralization-based spCas9 variant nanoparticles.
    Li S; Du M; Deng J; Deng G; Li J; Song Z; Han H
    Acta Biomater; 2022 Dec; 154():597-607. PubMed ID: 36243370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling the mechanisms of PAMless DNA interrogation by SpRY-Cas9.
    Hibshman GN; Bravo JPK; Hooper MM; Dangerfield TL; Zhang H; Finkelstein IJ; Johnson KA; Taylor DW
    Nat Commun; 2024 Apr; 15(1):3663. PubMed ID: 38688943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-mediated Genome Editing of the Human Fungal Pathogen Candida albicans.
    Evans BA; Pickerill ES; Vyas VK; Bernstein DA
    J Vis Exp; 2018 Nov; (141):. PubMed ID: 30507925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants.
    Walton RT; Christie KA; Whittaker MN; Kleinstiver BP
    Science; 2020 Apr; 368(6488):290-296. PubMed ID: 32217751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Mediated Genome Editing in the Human Fungal Pathogen C. albicans.
    Evans BA; Bernstein DA
    Methods Mol Biol; 2022; 2542():3-12. PubMed ID: 36008653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knock-in and precise nucleotide substitution using near-PAMless engineered Cas9 variants in Dictyostelium discoideum.
    Asano Y; Yamashita K; Hasegawa A; Ogasawara T; Iriki H; Muramoto T
    Sci Rep; 2021 May; 11(1):11163. PubMed ID: 34045481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PAM-Less CRISPR-SpRY Genome Editing in Plants.
    Sretenovic S; Tang X; Ren Q; Zhang Y; Qi Y
    Methods Mol Biol; 2023; 2653():3-19. PubMed ID: 36995616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.
    Hu JH; Miller SM; Geurts MH; Tang W; Chen L; Sun N; Zeina CM; Gao X; Rees HA; Lin Z; Liu DR
    Nature; 2018 Apr; 556(7699):57-63. PubMed ID: 29512652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SpRY: Engineered CRISPR/Cas9 Harnesses New Genome-Editing Power.
    Zhang D; Zhang B
    Trends Genet; 2020 Aug; 36(8):546-548. PubMed ID: 32456805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Cas9 protein variant VQR recognizes NGAC protospacer adjacent motif in rice].
    Xin GW; Hu XX; Wang KJ; Wang XC
    Yi Chuan; 2018 Dec; 40(12):1112-1119. PubMed ID: 30559100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can SpRY recognize any PAM in human cells?
    Ye J; Xi H; Chen Y; Chen Q; Lu X; Lv J; Chen Y; Gu F; Zhao J
    J Zhejiang Univ Sci B; 2022 May; 23(5):382-391. PubMed ID: 35557039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG.
    Zhong Z; Sretenovic S; Ren Q; Yang L; Bao Y; Qi C; Yuan M; He Y; Liu S; Liu X; Wang J; Huang L; Wang Y; Baby D; Wang D; Zhang T; Qi Y; Zhang Y
    Mol Plant; 2019 Jul; 12(7):1027-1036. PubMed ID: 30928637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The SpRY Cas9 variant release the PAM sequence constraint for genome editing in the model plant Physcomitrium patens.
    Calbry J; Goudounet G; Charlot F; Guyon-Debast A; Perroud PF; Nogué F
    Transgenic Res; 2024 Apr; 33(1-2):67-74. PubMed ID: 38573428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of CRISPR-Cas9 To Target Homologous Recombination Limits Transformation-Induced Genomic Changes in Candida albicans.
    Marton T; Maufrais C; d'Enfert C; Legrand M
    mSphere; 2020 Sep; 5(5):. PubMed ID: 32878930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PAMless SpRY exhibits a preference for the seed region for efficient targeting.
    Yang C; Zhou Z; Sun X; Ju H; Yue X; Rao S; Xue C
    Cell Rep; 2024 May; 43(5):114225. PubMed ID: 38733582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PAM-flexible genome editing with an engineered chimeric Cas9.
    Zhao L; Koseki SRT; Silverstein RA; Amrani N; Peng C; Kramme C; Savic N; Pacesa M; RodrĂ­guez TC; Stan T; Tysinger E; Hong L; Yudistyra V; Ponnapati MR; Jacobson JM; Church GM; Jakimo N; Truant R; Jinek M; Kleinstiver BP; Sontheimer EJ; Chatterjee P
    Nat Commun; 2023 Oct; 14(1):6175. PubMed ID: 37794046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide identification and analysis of highly specific CRISPR/Cas9 editing sites in pepper (Capsicum annuum L.).
    Li G; Zhou Z; Liang L; Song Z; Hu Y; Cui J; Chen W; Hu K; Cheng J
    PLoS One; 2020; 15(12):e0244515. PubMed ID: 33373406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.