These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 3401210)

  • 1. Distinction between major chloroquine-inhibitable and adrenergic-responsive pathways of protein degradation and their relation to tissue ATP content in the Langendorff isolated perfused rat heart.
    Lockwood TD
    Biochem J; 1988 Apr; 251(2):341-6. PubMed ID: 3401210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of insulin, biguanide antihyperglycaemic agents and beta-adrenergic agonists on pathways of myocardial proteolysis.
    Thorne DP; Lockwood TD
    Biochem J; 1990 Mar; 266(3):713-8. PubMed ID: 1970236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous response of myocardial contractility and a major proteolytic process to beta-adrenergic-receptor occupancy in the Langendorff isolated perfused rat heart.
    Lockwood TD
    Biochem J; 1985 Oct; 231(2):299-308. PubMed ID: 2998346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four proteolytic processes of myocardium, one insensitive to thiol reactive agents and thiol protease inhibitor.
    Thorne DP; Lockwood TD
    Am J Physiol; 1993 Jul; 265(1 Pt 1):E10-9. PubMed ID: 8338141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Zn2+ on the proteolytic inhibitory action of insulin and biguanide antihyperglycemic drugs.
    Thorne DP; Lockwood TD
    Diabetes; 1991 May; 40(5):612-20. PubMed ID: 1902428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internalized insulin-receptor complexes are unidirectionally translocated to chloroquine-sensitive degradative sites. Dependence on metabolic energy.
    Berhanu P
    J Biol Chem; 1988 Apr; 263(12):5961-9. PubMed ID: 3281950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-dependent and redox-independent subcomponents of protein degradation in perfused myocardium.
    Lockwood TD
    Am J Physiol; 1999 May; 276(5):E945-54. PubMed ID: 10329990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between coronary flow and high energy phosphates in the isolated perfused rat heart, with special reference to the effects of anoxia, iodoacetic acid, and 2,4-dinitrophenol.
    Shibano T; Abiko Y
    Methods Find Exp Clin Pharmacol; 1989 Sep; 11(9):567-75. PubMed ID: 2586203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of pretreatment with isoprenaline and conditions of perfusion on the specific radioactivity of ATP in rat heart].
    Verdetti J; Aussedat J; Rossi A
    C R Acad Sci III; 1984; 299(1):5-10. PubMed ID: 6432228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy dependent insulin binding, internalization and degradation in isolated cardiac myocytes from normal and diabetic rats.
    Im JH; Frangakis CJ; Rogers WJ; Puckett SW; Bowdon HR; Rackley CE; Meezan E; Kim HD
    J Mol Cell Cardiol; 1986 Feb; 18(2):157-68. PubMed ID: 3514924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenylalaninylargininylarginine: a novel tripeptide exerting Zn(2+)-dependent, insulin-mimetic inhibitory action on myocardial proteolysis.
    Zhang L; Lockwood TD
    Biochem J; 1993 Aug; 293 ( Pt 3)(Pt 3):801-5. PubMed ID: 8352749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Isoprenaline, modifications of the turnover of ATP in the perfused rat heart].
    Aussedat J; Ray A; Verdetti J
    C R Seances Acad Sci D; 1979 Jul; 289(3):311-4. PubMed ID: 117931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous adenosine increases O2 utilisation efficiency in isoprenaline-stimulated canine myocardium.
    Mallet RT; Lee SC; Downey HF
    Cardiovasc Res; 1996 Jan; 31(1):102-16. PubMed ID: 8849594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylated amino acids and lysosomal function in cultured heart cells.
    Decker RS; Fuseler JF
    Exp Cell Res; 1984 Sep; 154(1):304-9. PubMed ID: 6547910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of intracellular protein in muscle. Lysosomal response to modified proteins and chloroquine.
    Gerard KW; Hipkiss AR; Schneider DL
    J Biol Chem; 1988 Dec; 263(35):18886-90. PubMed ID: 3198604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake--microautophagy--and degradation of exogenous proteins by isolated rat liver lysosomes. Effects of pH, ATP, and inhibitors of proteolysis.
    Ahlberg J; Glaumann H
    Exp Mol Pathol; 1985 Feb; 42(1):78-88. PubMed ID: 3967751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of lysosomes in the degradation of myofibrillar and non-myofibrillar proteins in heart.
    Wildenthal K; Wakeland JR
    Prog Clin Biol Res; 1985; 180():511-20. PubMed ID: 3898115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of inhibition of endocytosis, recycling and lysosomal activity on the insulin binding capacity and imprintability of Tetrahymena.
    Kovács P; Csaba G
    Acta Physiol Hung; 1988; 71(2):315-22. PubMed ID: 3291555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential sensitivity to isoprenaline of troponin I and phospholamban phosphorylation in isolated rat hearts.
    Karczewski P; Bartel S; Krause EG
    Biochem J; 1990 Feb; 266(1):115-22. PubMed ID: 2155603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of hormone processing in insulin-activated glucose transport by isolated cardiac myocytes.
    Eckel J; Reinauer H
    Biochem J; 1988 Jan; 249(1):111-6. PubMed ID: 3277615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.