These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34012180)

  • 1. A generic physics-informed neural network-based constitutive model for soft biological tissues.
    Liu M; Liang L; Sun W
    Comput Methods Appl Mech Eng; 2020 Dec; 372():. PubMed ID: 34012180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the use of machine learning techniques for the mechanical characterization of soft biological tissues.
    Cilla M; Pérez-Rey I; Martínez MA; Peña E; Martínez J
    Int J Numer Method Biomed Eng; 2018 Oct; 34(10):e3121. PubMed ID: 29935057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the AIC-based model reduction for the general Holzapfel-Ogden myocardial constitutive law.
    Guan D; Ahmad F; Theobald P; Soe S; Luo X; Gao H
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1213-1232. PubMed ID: 30945052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How important is sample alignment in planar biaxial testing of anisotropic soft biological tissues? A finite element study.
    Fehervary H; Vastmans J; Vander Sloten J; Famaey N
    J Mech Behav Biomed Mater; 2018 Dec; 88():201-216. PubMed ID: 30179794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated model discovery for human brain using Constitutive Artificial Neural Networks.
    Linka K; St Pierre SR; Kuhl E
    Acta Biomater; 2023 Apr; 160():134-151. PubMed ID: 36736643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of Machine Learning Techniques in Soft Tissue Biomechanics and Biomaterials.
    Donmazov S; Saruhan EN; Pekkan K; Piskin S
    Cardiovasc Eng Technol; 2024 Jul; ():. PubMed ID: 38956008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive capabilities of various constitutive models for arterial tissue.
    Schroeder F; Polzer S; Slažanský M; Man V; Skácel P
    J Mech Behav Biomed Mater; 2018 Feb; 78():369-380. PubMed ID: 29220821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars.
    Gruber G; Nicolini LF; Ribeiro M; Lerchl T; Wilke HJ; Jaramillo HE; Senner V; Kirschke JS; Nispel K
    Front Bioeng Biotechnol; 2024; 12():1391957. PubMed ID: 38903189
    [No Abstract]   [Full Text] [Related]  

  • 9. Implementation and validation of constitutive relations for human dermis mechanical response.
    Aldieri A; Terzini M; Bignardi C; Zanetti EM; Audenino AL
    Med Biol Eng Comput; 2018 Nov; 56(11):2083-2093. PubMed ID: 29777504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical analysis of sheep oesophagus subjected to biaxial testing including hyperelastic constitutive model fitting.
    Ngwangwa H; Pandelani T; Msibi M; Mabuda I; Semakane L; Nemavhola F
    Heliyon; 2022 May; 8(5):e09312. PubMed ID: 35615432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain energy density as a Gaussian process and its utilization in stochastic finite element analysis: application to planar soft tissues.
    Aggarwal A; Jensen BS; Pant S; Lee CH
    Comput Methods Appl Mech Eng; 2023 Feb; 404():. PubMed ID: 37235184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing the non-linear mechanical behavior of native and biomimetic engineered tissues in 1D with physically meaningful parameters.
    Robbins AB; Freed AD; Moreno MR
    J Mech Behav Biomed Mater; 2020 Feb; 102():103509. PubMed ID: 31877517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian inference of constitutive model parameters from uncertain uniaxial experiments on murine tendons.
    Akintunde AR; Miller KS; Schiavazzi DE
    J Mech Behav Biomed Mater; 2019 Aug; 96():285-300. PubMed ID: 31078970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration of Holzapfel-Gasser-Ogden collateral ligament properties in a hybrid post-arthroplasty knee joint model for laxity testing.
    Milakovic L; Dandois F; Fehervary H; Scheys L
    Comput Methods Biomech Biomed Engin; 2023 Sep; ():1-11. PubMed ID: 37668078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical characterization and identification of material parameters of porcine aortic valve leaflets.
    Laville C; Pradille C; Tillier Y
    J Mech Behav Biomed Mater; 2020 Dec; 112():104036. PubMed ID: 32882679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue.
    Polzer S; Gasser TC; Novak K; Man V; Tichy M; Skacel P; Bursa J
    Acta Biomater; 2015 Mar; 14():133-45. PubMed ID: 25458466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significance of Dynamic Axial Stretching on Estimating Biomechanical Behavior and Properties of the Human Ascending Aorta.
    Parikh S; Giudici A; Huberts W; Delhaas T; Bidar E; Spronck B; Reesink K
    Ann Biomed Eng; 2024 Jun; ():. PubMed ID: 38836979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Use of Biaxial Properties in Modeling Annulus as a Holzapfel-Gasser-Ogden Material.
    Momeni Shahraki N; Fatemi A; Goel VK; Agarwal A
    Front Bioeng Biotechnol; 2015; 3():69. PubMed ID: 26090359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Modified Constitutive Model for Isotropic Hyperelastic Polymeric Materials and Its Parameter Identification.
    Wang W; Liu Y; Xie Z
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of
    Liu M; Liang L; Sun W
    Comput Methods Appl Mech Eng; 2019 Apr; 347():201-217. PubMed ID: 31160830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.