BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34012210)

  • 1. Structure Types of Kidney Stones and Their Susceptibility to Shock Wave Fragmentation.
    Kolupayev S; Lesovoy V; Bereznyak E; Andonieva N; Shchukin D
    Acta Inform Med; 2021 Mar; 29(1):26-31. PubMed ID: 34012210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gallstone fragmentation during biliary lithotripsy: effect of stone composition and structure.
    Zeman RK; Marchand T; Davros WJ; Garra BS; Glass-Royal M; Soloway RD
    AJR Am J Roentgenol; 1991 Mar; 156(3):493-9. PubMed ID: 1899743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stone fragility: its therapeutic implications in shock wave lithotripsy of upper urinary tract stones.
    Ansari MS; Gupta NP; Seth A; Hemal AK; Dogra PN; Singh TP
    Int Urol Nephrol; 2003; 35(3):387-92. PubMed ID: 15160546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ureteral stones: SWL treatment.
    Zanetti G
    Arch Ital Urol Androl; 2011 Mar; 83(1):10-3. PubMed ID: 21585162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new optical coupling control technique and application in SWL.
    Lv JL
    Urolithiasis; 2016 Nov; 44(6):539-544. PubMed ID: 27025864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The efficacy of extracorporeal shock wave lithotripsy for isolated lower pole calculi compared with isolated middle and upper caliceal calculi.
    Obek C; Onal B; Kantay K; Kalkan M; Yalçin V; Oner A; Solok V; Tansu N
    J Urol; 2001 Dec; 166(6):2081-4; discussion 2085. PubMed ID: 11696710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of synchronous twin pulse technique for shock wave lithotripsy: determination of optimal parameters for in vitro stone fragmentation.
    Sheir KZ; Zabihi N; Lee D; Teichman JM; Rehman J; Sundaram CP; Heimbach D; Hesse A; Delvecchio F; Zhong P; Preminger GM; Clayman RV
    J Urol; 2003 Dec; 170(6 Pt 1):2190-4. PubMed ID: 14634376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new nomogram for prediction of outcome of pediatric shock-wave lithotripsy.
    Dogan HS; Altan M; Citamak B; Bozaci AC; Karabulut E; Tekgul S
    J Pediatr Urol; 2015 Apr; 11(2):84.e1-6. PubMed ID: 25812469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic and mechanical properties of artificial stones in comparison to natural kidney stones.
    Heimbach D; Munver R; Zhong P; Jacobs J; Hesse A; Müller SC; Preminger GM
    J Urol; 2000 Aug; 164(2):537-44. PubMed ID: 10893640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy.
    Perks AE; Schuler TD; Lee J; Ghiculete D; Chung DG; D'A Honey RJ; Pace KT
    Urology; 2008 Oct; 72(4):765-9. PubMed ID: 18674803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How do stone attenuation and skin-to-stone distance in computed tomography influence the performance of shock wave lithotripsy in ureteral stone disease?
    Müllhaupt G; Engeler DS; Schmid HP; Abt D
    BMC Urol; 2015 Jul; 15():72. PubMed ID: 26201514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability of renal stone fragility in shock wave lithotripsy.
    Williams JC; Saw KC; Paterson RF; Hatt EK; McAteer JA; Lingeman JE
    Urology; 2003 Jun; 61(6):1092-6; discussion 1097. PubMed ID: 12809867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multidetector computed tomography: role in determination of urinary stones composition and disintegration with extracorporeal shock wave lithotripsy--an in vitro study.
    el-Assmy A; Abou-el-Ghar ME; el-Nahas AR; Refaie HF; Sheir KZ
    Urology; 2011 Feb; 77(2):286-90. PubMed ID: 20719366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal Stone Features Are More Important Than Renal Anatomy to Predict Shock Wave Lithotripsy Outcomes: Results from a Prospective Study with CT Follow-Up.
    Torricelli FCM; Monga M; Yamauchi FI; Marchini GS; Danilovic A; Vicentini FC; Batagello CA; Srougi M; Nahas WC; Mazzucchi E
    J Endourol; 2020 Jan; 34(1):63-67. PubMed ID: 31595801
    [No Abstract]   [Full Text] [Related]  

  • 15. Clinical predictors of stone fragmentation using slow-rate shock wave lithotripsy.
    Li WM; Wu WJ; Chou YH; Liu CC; Wang CJ; Huang CH; Lee YC
    Urol Int; 2007; 79(2):124-8. PubMed ID: 17851280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragmentation of brittle material by shock wave lithotripsy. Momentum transfer and inertia: a novel view on fragmentation mechanisms.
    Wess OJ; Mayer J
    Urolithiasis; 2020 Apr; 48(2):137-149. PubMed ID: 30523389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Case Volume on Shock Wave Lithotripsy Outcomes: Data from the National Shock Wave Lithotripsy Database of New Zealand.
    Alexander CE; Gowland S; Cadwallader J; Hopkins D; Reynard JM; Turney BW
    J Endourol; 2019 Aug; 33(8):655-659. PubMed ID: 30963786
    [No Abstract]   [Full Text] [Related]  

  • 18. The success of shock wave lithotripsy (SWL) in treating moderate-sized (10-20 mm) renal stones.
    Chung VY; Turney BW
    Urolithiasis; 2016 Oct; 44(5):441-4. PubMed ID: 26743071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of stress waves and cavitation in stone comminution in shock wave lithotripsy.
    Zhu S; Cocks FH; Preminger GM; Zhong P
    Ultrasound Med Biol; 2002 May; 28(5):661-71. PubMed ID: 12079703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of caliceal pelvic anatomy on stone clearance after shock wave lithotripsy for pediatric lower pole stones.
    Onal B; Demirkesen O; Tansu N; Kalkan M; Altintaş R; Yalçin V
    J Urol; 2004 Sep; 172(3):1082-6. PubMed ID: 15311043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.