BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3401244)

  • 1. Differential effects of chloroquine on the phospholipid metabolism of Plasmodium-infected erythrocytes.
    Vial HJ; Ancelin ML; Thuet MJ; Philippot JR
    Biochem Pharmacol; 1988 Aug; 37(16):3139-47. PubMed ID: 3401244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospholipid metabolism in Plasmodium-infected erythrocytes: guidelines for further studies using radioactive precursor incorporation.
    Vial HJ; Ancelin ML; Thuet MJ; Philippot JR
    Parasitology; 1989 Jun; 98 Pt 3():351-7. PubMed ID: 2505213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipid biosynthesis by Plasmodium knowlesi-infected erythrocytes: the incorporation of phospohlipid precursors and the identification of previously undetected metabolic pathways.
    Vial HJ; Thuet MJ; Broussal JL; Philippot JR
    J Parasitol; 1982 Jun; 68(3):379-91. PubMed ID: 7097440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipid metabolism of serine in Plasmodium-infected erythrocytes involves phosphatidylserine and direct serine decarboxylation.
    Elabbadi N; Ancelin ML; Vial HJ
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):435-45. PubMed ID: 9182701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of the fatty acid composition of individual phospholipids and neutral lipids after infection of the simian erythrocyte by Plasmodium knowlesi.
    Beaumelle BD; Vial HJ
    Biochim Biophys Acta; 1986 Jun; 877(2):262-70. PubMed ID: 3719005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospholipid uptake by Plasmodium knowlesi infected erythrocytes.
    Moll GN; Vial HJ; Ancelin ML; Op den Kamp JA; Roelofsen B; van Deenen LL
    FEBS Lett; 1988 May; 232(2):341-6. PubMed ID: 3378625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmodium knowlesi induces alterations in phosphatidylcholine and phosphatidylethanolamine molecular species composition of parasitized monkey erythrocytes.
    Simões AP; Moll GN; Beaumelle B; Vial HJ; Roelofsen B; Op den Kamp JA
    Biochim Biophys Acta; 1990 Feb; 1022(2):135-45. PubMed ID: 2306451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipid organization in monkey erythrocytes upon Plasmodium knowlesi infection.
    Van der Schaft PH; Beaumelle B; Vial H; Roelofsen B; Op den Kamp JA; Van Deenen LL
    Biochim Biophys Acta; 1987 Jul; 901(1):1-14. PubMed ID: 3593720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of simian malarial parasite (Plasmodium knowlesi)-induced putrescine transport in rhesus monkey erythrocytes. A novel putrescine conjugate arrests in vitro growth of simian malarial parasite (Plasmodium knowlesi) and cures multidrug resistant murine malaria (Plasmodium yoelii) infection in vivo.
    Singh S; Puri SK; Singh SK; Srivastava R; Gupta RC; Pandey VC
    J Biol Chem; 1997 May; 272(21):13506-11. PubMed ID: 9153195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased permeability to choline in simian erythrocytes after Plasmodium knowlesi infection.
    Ancelin ML; Parant M; Thuet MJ; Philippot JR; Vial HJ
    Biochem J; 1991 Feb; 273 ( Pt 3)(Pt 3):701-9. PubMed ID: 1996967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of radioactive ethanolamine incorporation into phospholipids to assess in vitro antimalarial activity by the semiautomated microdilution technique.
    Elabbadi N; Ancelin ML; Vial HJ
    Antimicrob Agents Chemother; 1992 Jan; 36(1):50-5. PubMed ID: 1590699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospholipid metabolism as a new target for malaria chemotherapy. Mechanism of action of D-2-amino-1-butanol.
    Vial HJ; Thuet MJ; Ancelin ML; Philippot JR; Chavis C
    Biochem Pharmacol; 1984 Sep; 33(17):2761-70. PubMed ID: 6431995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipid asymmetry in the plasma membrane of malaria infected erythrocytes.
    Moll GN; Vial HJ; Bevers EM; Ancelin ML; Roelofsen B; Comfurius P; Slotboom AJ; Zwaal RF; Op den Kamp JA; van Deenen LL
    Biochem Cell Biol; 1990 Feb; 68(2):579-85. PubMed ID: 2344403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of methylene blue on the pentose phosphate pathway in erythrocytes of monkeys infected with Plasmodium knowlesi.
    Barnes MG; Polet H
    J Lab Clin Med; 1969 Jul; 74(1):1-11. PubMed ID: 4978077
    [No Abstract]   [Full Text] [Related]  

  • 15. Hypoxanthine metabolism by human malaria infected erythrocytes: focus for the design of new antimalarial drugs.
    Webster HK; Wiesmann WP; Walker MD; Bean T; Whaun JM
    Adv Exp Med Biol; 1984; 165 Pt A():219-23. PubMed ID: 6372377
    [No Abstract]   [Full Text] [Related]  

  • 16. Biosynthesis and dynamics of lipids in Plasmodium-infected mature mammalian erythrocytes.
    Vial HJ; Ancelin ML; Philippot JR; Thuet MJ
    Blood Cells; 1990; 16(2-3):531-55; discussion 556-61. PubMed ID: 2257325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phospholipid biosynthesis in synchronous Plasmodium falciparum cultures.
    Vial HJ; Thuet MJ; Philippot JR
    J Protozool; 1982 May; 29(2):258-63. PubMed ID: 7047730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloroquine effects on parasite and host membranes of intraerythrocytic Plasmodium chabaudi.
    Stübig H; Könoigk E
    Tropenmed Parasitol; 1981 Jun; 32(2):77-81. PubMed ID: 7256832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced transbilayer mobility of phospholipids in malaria-infected monkey erythrocytes: a spin-label study.
    Beaumelle BD; Vial HJ; Bienvenüe A
    J Cell Physiol; 1988 Apr; 135(1):94-100. PubMed ID: 2835380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the acidic compartment of Plasmodium falciparum-infected human erythrocytes as the target of the antimalarial drug chloroquine.
    Yayon A; Cabantchik ZI; Ginsburg H
    EMBO J; 1984 Nov; 3(11):2695-700. PubMed ID: 6391917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.