BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 3401246)

  • 1. In-vivo and in-vitro dextromethorphan metabolism in SD and DA rat. An animal model of the debrisoquine-type polymorphic oxidation in man.
    Zysset T; Zeugin T; Küpfer A
    Biochem Pharmacol; 1988 Aug; 37(16):3155-60. PubMed ID: 3401246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacogenetics of dextromethorphan O-demethylation in man.
    Küpfer A; Schmid B; Pfaff G
    Xenobiotica; 1986 May; 16(5):421-33. PubMed ID: 3739367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary and secondary oxidative metabolism of dextromethorphan. In vitro studies with female Sprague-Dawley and Dark Agouti rat liver microsomes.
    Kerry NL; Somogyi AA; Mikus G; Bochner F
    Biochem Pharmacol; 1993 Feb; 45(4):833-9. PubMed ID: 8452558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Animal modelling of human polymorphic drug oxidation--the metabolism of debrisoquine and phenacetin in rat inbred strains.
    Al-Dabbagh SG; Idle JR; Smith RL
    J Pharm Pharmacol; 1981 Mar; 33(3):161-4. PubMed ID: 6116757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dextromethorphan metabolism in rat: interstrain differences and the fate of individually administered oxidative metabolites.
    Bochner F; Somogyi AA; Chen ZR
    Xenobiotica; 1994 Jun; 24(6):543-52. PubMed ID: 7975720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dextromethorphan: polymorphic serum pattern of the O-demethylated and didemethylated metabolites in man.
    Mortimer O; Lindström B; Laurell H; Bergman U; Rane A
    Br J Clin Pharmacol; 1989 Feb; 27(2):223-7. PubMed ID: 2713216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymorphic dextromethorphan metabolism: co-segregation of oxidative O-demethylation with debrisoquin hydroxylation.
    Schmid B; Bircher J; Preisig R; Küpfer A
    Clin Pharmacol Ther; 1985 Dec; 38(6):618-24. PubMed ID: 4064464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dextromethorphan metabolism in Jordanians: dissociation of dextromethorphan O-demethylation from debrisoquine 4-hydroxylation.
    Irshaid YM; al-Hadidi HF; Latif A; Awwadi F; al-Zoubi M; Rawashdeh NM
    Eur J Drug Metab Pharmacokinet; 1996; 21(4):301-7. PubMed ID: 9074894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methoxyphenamine metabolism in rat models of human debrisoquine phenotypes.
    Roy SD; Hawes EM; McKay G; Hubbard JW; Midha KK
    Can J Physiol Pharmacol; 1985 Jul; 63(7):778-81. PubMed ID: 3876145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective in vivo inhibition by quinidine of methoxyphenamine oxidation in rat models of human debrisoquine polymorphism.
    Muralidharan G; Midha KK; McKay G; Hawes EM; Inaba T
    Xenobiotica; 1989 Feb; 19(2):189-97. PubMed ID: 2786289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the debrisoquin and dextromethorphan phenotyping tests by gaussian mixture distributions analysis.
    Henthorn TK; Benitez J; Avram MJ; Martinez C; Llerena A; Cobaleda J; Krejcie TC; Gibbons RD
    Clin Pharmacol Ther; 1989 Mar; 45(3):328-33. PubMed ID: 2920506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Codeine O-demethylation: rat strain differences and the effects of inhibitors.
    Mikus G; Somogyi AA; Bochner F; Eichelbaum M
    Biochem Pharmacol; 1991 Mar; 41(5):757-62. PubMed ID: 1998530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methoxyphenamine and dextromethorphan as safe probes for debrisoquine hydroxylation polymorphism.
    Roy SD; Hawes EM; Hubbard JW; McKay G; Midha KK
    Lancet; 1984 Dec; 2(8416):1393. PubMed ID: 6150386
    [No Abstract]   [Full Text] [Related]  

  • 14. Phenotypic differences in dextromethorphan metabolism.
    Vetticaden SJ; Cabana BE; Prasad VK; Purich ED; Jonkman JH; de Zeeuw R; Ball L; Leeson LJ; Braun RL
    Pharm Res; 1989 Jan; 6(1):13-9. PubMed ID: 2717511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymorphic ochratoxin A hydroxylation in rat strains phenotyped as poor and extensive metabolizers of debrisoquine.
    Castegnaro M; Bartsch H; Bereziat JC; Arvela P; Michelon J; Broussolle L
    Xenobiotica; 1989 Feb; 19(2):225-30. PubMed ID: 2786290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dextromethorphan and caffeine as probes for simultaneous determination of debrisoquin-oxidation and N-acetylation phenotypes in children.
    Evans WE; Relling MV; Petros WP; Meyer WH; Mirro J; Crom WR
    Clin Pharmacol Ther; 1989 May; 45(5):568-73. PubMed ID: 2721111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxylation of debrisoquine using perfused liver isolated from Sprague Dawley and DA rats: comparison with in-vivo results.
    Vincent-Viry M; Deshayes S; Mothe O; Siest G; Galteau MM
    J Pharm Pharmacol; 1988 Oct; 40(10):695-700. PubMed ID: 2907535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dextromethorphan as a safe probe for debrisoquine hydroxylation polymorphism.
    Küpfer A; Schmid B; Preisig R; Pfaff G
    Lancet; 1984 Sep; 2(8401):517-8. PubMed ID: 6147572
    [No Abstract]   [Full Text] [Related]  

  • 19. Genetically determined oxidation capacity and the disposition of debrisoquine.
    Sloan TP; Lancaster R; Shah RR; Idle JR; Smith RL
    Br J Clin Pharmacol; 1983 Apr; 15(4):443-50. PubMed ID: 6849780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of liver disease on dextromethorphan oxidation capacity and phenotype: a study in 107 patients.
    Larrey D; Babany G; Tinel M; Freneaux E; Amouyal G; Habersetzer F; Letteron P; Pessayre D
    Br J Clin Pharmacol; 1989 Sep; 28(3):297-304. PubMed ID: 2789923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.